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Abstract—The Quality of Experience (QoE) of streaming service is often degraded by frequent playback interruptions. To mitigate the

interruptions, the media player prefetches streaming contents before starting playback, at a cost of initial delay. We study the QoE of

streaming from the perspective of flow dynamics. First, a framework is developed for QoE when streaming users join the network

randomly and leave after downloading completion. We model the distribution of prefetching delay using partial differential equations

(PDEs), and the probability generating function of playout buffer starvations using ordinary differential equations (ODEs) for constant

bit-rate (CBR) streaming. The explicit form starvation probabilities and mean start-up delay are obtained by use of a matrix function

approach. Second, we extend our framework to characterize the throughput variation caused by opportunistic scheduling at the base

station, and the playback variation of variable bit-rate (VBR) streaming. Our study reveals that the flow dynamics is the fundamental

reason of playback starvation. The QoE of streaming service is dominated by the first moments such as the average throughput of

opportunistic scheduling and the mean playback rate. While the variances of throughput and playback rate have very limited impact on

starvation behavior in practice.

Index Terms—Quality of experience, start-up delay, buffer starvation, flow dynamics, video streaming

Ç

1 INTRODUCTION

STREAMING services are witnessing a rapid growth in
mobile networks. According to Cisco VNI white paper,

mobile video traffic exceeded 50 percent of total mobile
data traffic for the first time in 2012 [1]. This presents new
challenges for operators that are used to classify services
into real-time (voice-like) and elastic (data-like) services.
Indeed, classical quality of service (QoS) metrics in mobile
networks are blocking rates for real-time traffic and aver-
age user throughput for elastic one, and operators dimen-
sion their networks for satisfying targets on those metrics
[2]. However, the particular nature of streaming applica-
tions, halfway between real-time and elastic services, is
raising the following difficult questions in wireless envi-
ronments. First, which QoS metrics best represent the
QoE perceived by users. Second, how to predict these QoE
metrics for a given traffic intensity and to dimension the
network accordingly.

The first step towards defining QoE and predicting it is to
understand how streaming is played. In general, media
players at the devices are equipped with a playout buffer
that stores arriving packets. As long as there are packets in
the buffer, the video is played smoothly. Once the buffer

empties, the spacing between packets does not follow the
original one. These starvations cause large jitters and are par-
ticularly annoying for end users that see frozen images. One
feasible way to avoid starvations is to introduce a start-up
(also called prefetching) delay before playing the stream,
and a rebuffering delay after each starvation event. Then
after a number of media frames accumulate in the buffer,
the media player starts to work. This leads to two important
sets of QoE metrics: starvation properties (probability, fre-
quency, etc.) and startup/re-buffering delays.

Once the behavior of media streaming service is under-
stood, the particularity of offering it over wireless net-
works is considered. Indeed, wireless channel is subject
to a large variability due to fading, mobility etc. On top
of this, it is a shared channel where multiple users are
served simultaneously. Each flow delivers a file of finite
size and leaves the system after the completion of down-
loading. The arrival and departure of flows cause a sto-
chastic number of concurrent flows sharing the same
wireless channel. We call this phenomena the flow dynam-
ics. The flow dynamics leads to the variation of per-flow
throughput that cannot be simply taken as a random vari-
able. In a sense, with flow dynamics, the wireless channel
consists of two time-scale variabilities: flow-level (tens of
seconds) variability driven by the departures/arrivals of
flows and wireless channel variability (milliseconds)
driven by fast fading. In addition, the variable bit-rate
(VBR) streaming leads to a variable service rate at the
time scale of tens of milliseconds.

1.1 Related Literature

Starting from the mid-nineties, many works focused on per-
formance analysis for real time video delivery over wireless
networks. A large attention was given to enhance video cod-
ing in order to combat errors introduced by the wireless
channel variability. [3] derived a theoretical framework for
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the picture quality after video transmission over lossy chan-
nels, based on a 2-state Markov model describing burst
errors on the symbol level. Authors in [4] and [5] proposed
methods for estimating the channel distortion and its
impact on performance. These works mainly focused on
ensuring robustness of video delivery over a variable wire-
less channel but did not consider the impact of flow-level
dynamics. A more recent set of works considered flow-level
performance in cellular networks delivering real time video.
Authors in [2] proposed a queuing theory model for deriv-
ing QoS when integrating elastic and video traffic in cellular
networks; video QoS was expressed by a blocking rate,
while average throughputs and delays represent QoS for
elastic traffic. Authors in [6] derived the Erlang-like capacity
region for a traffic mix including real time video, the aim
being to dimension the network for ensuring a target QoS.
[7] derived the stability region of the network and showed
how it is impacted by real-time video traffic.

With the increased popularity of streaming services over
wireless systems, more attention has been dedicated to
deriving QoE performance metrics for this new streaming
service, knowing the initial buffering period and its rela-
tionship with starvation. QoE issue has been addressed in
the important works [8], [12], [13], [14]. These works adopt
different methodologies and assumptions for deriving QoE
metrics. [12] considered a general G/G/1 queue where the
arrival and service rates are characterized by their first two
moments, while [13] considered a particular wireless chan-
nel model where the channel oscillates between good and
bad states following the extended Gilbert model [15].
Authors in [14] considered a particular P2P video streaming
based on random linear network coding; this simplifies the
packet requests at the network layer and allows to model
the receiver buffer as an M/D/1 queue. Finally, an M/M/1
queue model has been adopted in [8], allowing to derive
explicit formula for QoE metrics. The playback interruption
behaviors for an M/D/1 queue are considered in [11]. The
authors further propose a set of mathematical models to
characterize the distribution of start-up delay and buffer
starvation when multiple streaming flows with finite dura-
tion share the same wireless bottleneck [10].

As of the tools used in the literature for deriving QoE
metrics, they differ in the adopted system models. [12]
adopted a diffusion approximation where the discrete
buffer size is replaced with a Brownian motion whose drift
and diffusion coefficients are calculated based on the first
two moments of the arrival and service rates. [13] presented
a probabilistic analysis based on an a priori knowledge of
the playback and arrival curves. [14] calculated bounds on
the playback interruption probability based on the adopted
M/D/1 buffer model. Explicit formula of the exact distribu-
tion of the number of starvations has been obtained in [8]
based on a Ballot theorem approach [16]. Authors in [8] also
proposed an alternative approach for computing QoE met-
rics based on a recursive algorithm that performs better
than the Ballot Theorem in terms of complexity. They fur-
ther studied the QoE metrics of a persistent video streaming
in cellular networks in [9].

The above-described works on QoE estimation are very
useful for catching the impact of variability of the wireless
channel due to fast fading or even user’s mobility. However,

the underlying models fail to capture the large variations
due to flow dynamics. For instance, the diffusion approxi-
mation in [12] supposes that the drift and diffusion coeffi-
cients are constant over time, which is not true when the
number of concurrent flows changes during playback in
wireless environments. The assumption of Poisson packet
arrivals in [8], [14] also fails to take into account these flow
dynamics. Note that the analysis of [14] has been general-
ized to a two-state Markovian arrival process, but this corre-
sponds more to a bursty traffic due to a Gilbert channel
model than to flow dynamics.

1.2 Main Contributions and Organization

To the best of our knowledge, this paper is the first attempt
to assess the impact of flow dynamics on the QoE of stream-
ing. We model the system as two queues in tandem. The
first queue, representing the scheduler of the base station
(BS), is modeled as a processor sharing queue, while the sec-
ond represents the playout buffer whose arrival rates are
governed by the output process of the base station queue.
We first consider a static channel (no fast fading) with Con-
stant Bit Rate (CBR) streaming, and derive the prefetching
delay distribution and the starvation probability generation
function using Partial Differential Equations (PDEs) as well
as Ordinary Differential Equations (ODEs) constructed over
the Markov process describing the flow dynamics. We then
extend the model to the Variable Bit Rate streaming using
diffusion approximation. We next extend the model to
include a fast fading channel and show that the impact of
flow dynamics is preponderant over the variability of the
channel due to fast fading. Extensive simulations show that
our models are accurate enough to be used in QoE
prediction.

Our study provides important insights in the design and
optimization of video streaming services. First, we bring a
new understanding to the QoE of Internet streaming in cel-
lular networks. We rigorously show that the QoE metrics
are mostly influenced by the dynamic arrival and departure
of streaming flows. While before our study, a number of
related works mainly focus on the impact of variance of
packet arrivals in a slot on the starvation behavior (e.g., [8],
[12], [13], [14]), and their models as well as proposals may
not be effective in shared wireless channel. Therefore, in
order to improve QoE, network operations need to design
new resource allocation strategies, and streaming users
need to configure the prefetching scheme with the consider-
ation of flow dynamics. Second, our models shed light on
the explicit relationship between prefetching and QoE met-
rics. As the prefetching thresholds increase, the starvation
probabilities decrease exponentially. The proposed models
enable us to identify critical scenarios that the starvation
probabilities are very sensitive to the prefetching thresh-
olds. Third, our explicit form models provide an easy way
for online/offline QoE prediction and enhancement. With
the pre-knowledge of throughput variation caused by flow
dynamics, a streaming user can choose a better start-up/
rebuffering threshold that guarantees the starvation proba-
bility below a certain level. Our models can help network
operators to determine how many video streams can be
admitted in a cell, and serve as a benchmark for network
operators to design QoE-aware scheduling algorithms.

XU ETAL.: FLOW-LEVEL QOE OF VIDEO STREAMING IN WIRELESS NETWORKS 2763

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 04,2023 at 04:36:12 UTC from IEEE Xplore.  Restrictions apply. 



The main contributions of this work are summarized as
follows:

1) We develop an analytical framework for assessing
the impact of flow dynamics on streaming QoE in
bandwidth shared wireless networks. The most
striking result is that to handle this new issue, we
propose a series of interdisciplinary approaches
inherited from ruin analysis in actuarial science.

2) We present explicit form expressions for the QoE
metrics (i.e., the start-up delay and the starvation
behaviors), in which only some diagonalization steps
of low-dimensional matrices are needed.

3) We evaluate the QoE metrics of both CBR and VBR
streaming. Among three types of variations that may
influence QoE metrics, our analyses show that the
variation of throughput due to flow dynamics domi-
nates the variations due to fast channel fading and
variable sizes of video frame.

The remainder of this paper is organized as follows.
Section 2 describes the system model and the QoE metrics.
Section 3 presents the analytical framework for analyzing
QoE taking into account flow dynamics. VBR streaming is
analyzed in Section 4. The analytical model is verified
through simulations in Section 5 and a perfect match is
demonstrated. Section 6 extends the QoE analysis frame-
work to include the impact of fast fading. We discuss the
potential limitations and their justifications in Section 7.
Section 8 eventually concludes the paper.

2 PROBLEM DESCRIPTION AND MODEL

In this section, we first describe our motivation and the net-
work settings. We then define the metrics of quality of expe-
rience for media streaming service, and present a queueing
model for the playout buffer at a user.

2.1 Motivation and Network Description

We consider a wireless data network that supports a num-
ber of flows. When a new flow “joins” the network, it
requests the streaming service from a media server. After
the connection has been built, the streaming packets are
transmitted through the base station. The streaming flows
have finite sizes, which means that a flow “leaves” the net-
work once the transmission completes. Note that each active
user cannot watch more than one streams at the mobile
device simultaneously. Hence, we use the terms “flow” and
“user” interchangeably. The flows are competing for finite
capacity (or resource). When the number of flows sharing
the bottleneck increases, network congestion occurs. The
decrease of per-flow throughput may result in the undesir-
able playback interruption of video streaming services. The
arrival and departure of flows further cause throughput
fluctuation of the concurrent flows. To summarize, with the
dynamics of co-existing flows in the bottleneck, per-flow
throughput is not a random variable that has been studied
in the literature, but a continuous time stochastic process.

In wireless data networks, a streaming flow may traverse
both wired and wireless links, whereas the BS is the bottle-
neck for the sake of limited channel capacity. Most of Inter-
net streaming providers such as Youtube and Youku use

TCP/HTTP protocols to deliver streaming packets. TCP
congestion control scheme tries to send as more packets as
possible to the user (by consistently increasing the conges-
tion window) in order to explore the available bandwidth.
The sender reduces the congestion window when packet
drops have been detected. The packet drops happen when
the number of backlogged packets exceeds a certain thresh-
old, e.g., the maximum queue length in the DropTail and
the minimum threshold in the random early detection
(RED) active queue management scheme. Therefore, it is
reasonable to assume that the queue of an active flow is
always backlogged at the BS. The packet losses rarely hap-
pen under adversary wireless channel conditions. The rea-
son lines in that the adaptive coding and modulation in the
physical layer, and ARQ scheme at the MAC layer can effec-
tively avoid TCP packet loss caused by channel variation. A
recent measurement study validates that TCP packet loss
rate is usually less than 0.1 percent in 3G/4G channels [36].

Streaming flows may experience fast fading and normal-
ized signal-to-noise ratio (NSNR) scheduling is usually
adopted to achieve multiuser diversity with the consider-
ation of fairness [18], [19]. The scheduling duration is com-
monly around 2 ms [17]. NSNR selects the user that has the
largest ratio of signal-to-noise ratio (SNR) compared with
its mean SNR. It is similar to the well-known proportional
fair (PF) scheduler in that they both attempt to achieve
channel access-time fairness. We consider NSNR instead of
PF for two reasons. First, the moments of throughput of PF
do not have explicit results, even asymptotic ones (see [19]
and references therein) when the channel capacity is com-
puted according to the Shannon theorem. Second, NSNR
needs the knowledge of the average SNR that can be
obtained from the history information. When a flow join the
network, its throughput process is stationary as long as
the number of active flows does not change. However, the
throughput of PF scheduler is not stationary, but is a
dynamic function of time t (see [20] for the ODE throughput
model with two users). It relies on the configuration of the
average throughput at time 0. The initial average through-
put may influence the start-up delay, and cause the whole
system intractable. Here, we make a declaration that our
analytical framework applies to any wireless scheduling
algorithm whose first two moments of throughput per-slot
can be derived.

At the user side, incoming bits are reassembled into
video frames step by step. These video frames are played
with a deterministic rate, e.g., 25 frames per second (fps) in
the TV and movie-making businesses. The size of a frame is
determined by the video codec, i.e., a high definition video
streaming or a complex video scenario require more bits to
render each frame. We consider two modes of streaming
services: constant bit-rate and variable bit-rate. In CBR, the
rate at which a codec’s output data should be consumed is
constant (i.e., the same size of frames). The VBR streaming
has a variable frame size so as to deliver a more efficiently
encoded and consistent watching experience. The frame
size roughly follows Erlang/Gamma distributions [21].

We highlight the properties of the streaming system
briefly to facilitate the mathematical modeling. In our sys-
tem, there exist three time scales shown in Fig. 1: i) the
scheduling duration (e.g., 2 ms); ii) playback interval (e.g.,
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40 ms for a video frame rate of 25 fps), and iii) duration of
flow dynamics (lasting about tens of seconds). The sched-
uler and the media player do not work at the same granular-
ity of time scale and job size.

The video streaming system is then deemed as a queue-
ing process. The arrival to the queue contains two type of
variations: one is due to flow arrival and departure, the
other is due to fast fading and scheduled transmission. The
service of the queue comprises only the variation of video
frame size. In what follows, we build a mathematical frame-
work to show the impact of these variations on the QoE of
streaming services.

2.2 QoE Metrics

There exist five industry-standard video quality metrics.
Authors in [22] summarize them into five terms: join time,
buffering ratio, rate of buffering events, average bitrate and ren-
dering quality. The first three metrics reflect the fundamental
tradeoff in designing the prefetching process. The last two
metrics are concerned with source coding. For analytical
convenience, we redefine the QoE metrics regarding
“prefetching” process.

2.2.1 Start-Up Delay

The start-up delay denotes the duration (measured in sec-
onds) between the time that a user initiates a session and
the time that the media player starts playing video
frames. In the initial prefetching phase, the player starts
until the duration of received video reaches the start-up
threshold measured in seconds of video segment. The
start-up delay depicts the user’s impatience of waiting for
the video playback. Once the starvation event happens,
the player pauses and resumes until the rebuffered video
duration reaches the rebuffering threshold. We use the term
rebuffering delay to differentiate the rebuffering time from
the initial start-up delay.

2.2.2 Starvation Probabilities

When the playout buffer of a user becomes empty before the
video has been completely played, we call this event a star-
vation. The starvation is very annoying to users. We adopt
the starvation probability to evaluate the influence of the
start-up threshold. In addition, if the rebuffering process is
taken into account, we analyze the probabilities of having a
certain number of starvations.

Note that the start-up delay and the starvation probabili-
ties can be used to compute the QoE metrics in [22]. The
expected number of starvations is the sum of the products
of the number of starvations and its probability. The
expected buffering time equals to the product of the start-
up delay in each rebuffering and the mean number of star-
vation events (including the initial prefetching).

2.3 Basic Queueing Model of Playout Buffer

We consider a wireless cellular network that supports up to
K simultaneous flows. The purpose of admission control is
to avoid the overloading of the cell. We make the following
assumptions:

2.3.1 Single User Type and Static Channel

We begin with the case where streaming users coexist in a
static channel, as this provides an easier route to under-
stand the developed QoE evaluation model. We suppose
that all the flows have the same SNR, and hence, in a
static channel case, identical throughput. The concurrent
flows compete for finite channel capacity such that the
per-flow throughput is inversely proportional to the num-
ber of active flows. The extension to a Rayleigh fading
channel is presented in Section 6 where mobile users
have independent and identically distributed (i.i.d) SNR
in each scheduling slot. Note that the i.i.d Rayleigh fading
serves as a benchmark scenario for the analysis of channel
capacity in wireless systems, e.g., [32], [33], [34], [35]
among a large body of similar type of works.

2.3.2 Exponentially Distributed Video Duration

The video duration, measured in seconds, is exponentially
distributed with mean 1=u. Though the exponential distri-
bution is not the most realistic way to describe video dura-
tion, it reveals the essential features of the system, and is the
first step for more general distributions.

2.3.3 Processor Sharing at the BS

The scheduling slot is very small (e.g., �2 ms in 3G LTE)
compared with the service interval between two video
frames (e.g., 40 ms at 25 fps) in the playout buffer. This
property enables us to treat the BS as an egalitarian proces-
sor sharing queue where all the flows are served simulta-
neously. Hence, the per-flow throughput, depicted in
continuous time, is a deterministic step-wise function of the
number of active users in the static channel (e.g., [27]).

2.3.4 Continuous Time Playback

The service of video contents is regarded as a continuous
process, instead of a discrete rendering of adjacent video
frames spaced by a fixed interval. This assumption is
commonly used (see [28]) and is validated by simulations
in this work. We assume that all the flows have identical
video bit-rate.

All the notations are summarized in the Table 1. We
denote by � the arrival rate of new video streams. Let
Bitrate be the playback speed of video streams in bits
per-second, and C (in bps) be the capacity of the static
wireless channel. Given the exponential distribution of
video duration, the file size F (measured in bits) is also
exponentially distribution with mean 1=uF ¼ Bitrate=u.
Therefore, the dynamics of coexisting flows in the cell can
be depicted as a continuous time Markov chain (CTMC)
with a finite state space.

We concentrate on one “tagged” flow in order to gain the
insight of dynamics of the playout buffer. At any time t,
the tagged flow sees i other flows in a finite space

Fig. 1. Illustration of three different time scales.
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S :¼ f0; 1; . . . ; K � 1g. Because wireless channel is a shared
medium, per-flow throughput is inversely proportional to
the number of coexisting flows. For the tagged flow, its
throughput will change when a new flow joins or a concur-
rent flow completes the transmission. Given the assumption
of exponentially distributed flow size, the service time of a
flow is also exponentially distributed. This implies that the
departure of a flow only depends on the current number of
coexisting flow, while not the past history. We hereby define
a stochastic process to capture the throughput dynamics of
the tagged user.

Definition 1 (Environment Process). The environmental pro-
cess fIðtÞ; t � 0g is an irreducible and recurrent Markov chain
that has discrete states in the set S ¼ f0; 1; . . . ; K � 1g. The
transition rate from state i to iþ1 is � ð0 � i < K�1Þ, and
from state i to i�1 is ni ð0 < i � K�1Þ. Denote by
fpi; i 2 Sg the stationary distribution of environmental states.
Note that the environment change is caused by flow arrival/
departure.

The close-form expressions of ni and pi (8i 2 S) will be
computed in the following section. At any state i, the
throughput of the tagged flow is determined by the environ-

ment process as bi :¼ C
Bitrate�ðiþ1Þ in seconds of video contents.

Let NeðtÞ be the number of changes in the environment by
time t. Denote by Al the time that the lth environmental
change takes place with A0 ¼ 0 and by Il :¼ IðAlÞ the state
to which the environment changes after time Al. When the
tagged flow joins the network, we begin to study the
dynamics of its playout buffer length. The entry time of
the tagged flow is set to t ¼ 0.

We denote by QðtÞ the length of playout buffer measured
in seconds of video contents at time t. In the initial prefetch-
ing phase, the queue dynamics consists of only packet
arrival, while in the playback phase, the queue dynamics
contains both packet arrival and service of video frames. To
differentiate these two phases, we denote by QaðtÞ and
QbðtÞ the buffer length of the initial prefetching phase and
the playback phase at time t respectively.

2.3.5 Initial Prefetching Phase

The queue dynamics is given by

QaðtÞ ¼
XNeðtÞ

l¼1

bIl�1
ðAl �Al�1Þ þ bINeðtÞ ðt�ANeðtÞÞ: (1)

Denote by qa the start-up threshold. When QaðtÞ increases
from 0 until qa, the initial prefetching phase ceases. The
start-up delay, denoted by Ta, is expressed as

Ta ¼ infft � 0jQaðtÞ � qag: (2)

The cumulative distribution of Ta is given by

Ciðt; qaÞ ¼ PfTa < tjIð0Þ ¼ ig (3)

if the tagged flow is in state i upon arrival.

2.3.6 Playback Phase

When the initial prefetching phase ceases and the playback
phase begins immediately, the amount of prefetched con-
tent is exactly qa. In the playback phase, the queueing pro-
cess is expressed as

QbðtÞ ¼ qa � tþ
XNeðtÞ

l¼1

bIl�1
ðAl�Al�1Þ þ bINeðtÞ ðt�ANeðtÞÞ; (4)

if the time axis starts at the instant of playing. Define
ci :¼ bi � 1 for all i 2 S. Define

Tb ¼ infft � 0jQbðtÞ < 0g (5)

TABLE 1
Glossary of Main Notations

Notation Definitions

� flow arrival rate
C capacity of static wireless chennel
F file size (random variable)
1=u mean video duration
1=uF mean video file size
K maximum number of coexisting flows
Bitrate video bit-rate in bps
bi; ci bi :¼ C

Bitrateðiþ1Þ ; ci :¼ bi � 1

S the set of other flows except the tagged flow
q playout buffer length measured in seconds
qa start-up threshold
qb rebuffering threshold
QðtÞ playout queue length at time t
QaðtÞ playout queue length of start-up phase at time t
QbðtÞ playout queue length of playback phase at time t
Ta start-up delay
Tb time till starvation (empty playout buffer)
Te completion time of downloading
m;mi departure rate of a flow at state i
r; ri �=m, �=mi,
ni departure rate of a flow at state i

observed by the tagged flow
’i rate of completion of downloading
WiðqaÞ starvation probability with initial

state i and start-up threshold qa
Uiðq; tÞ starvation probability before time t,

given initial conditions (i; q)
Vijðq; qaÞ the probability that the prefetching process starts

at state i and ends at state j, given initial
buffer length q and threshold qa

Xiðq; qaÞ expected start-up delay, given initial state i and initial
buffer length qa and start-up threshold qa

YijðqÞ probability that a playback process starts at state i
and starves at state j, given initial buffer length q

ZiðqÞ starvation probability of VBR streaming
given initial state i and initial buffer length q

L number of starvations experienced by a stream
B;Bh standard Wiener process
s2 variance of frame size in VBR streaming
ri transmission rate to one particular flow per slot/Hz
r�i transmission rate of user with best SNR per slot/Hz
Ri per-flow throughput in one second

measured by video duration
B width of wireless spectrum in Hz
pi steady state probability of number of flows at state i
s duration of a scheduling slot (2 ms)
~mi departure rate of a flow at state i

in the presence of fast fading
L� eigenvalues of matricesM�
D� invertible matrix obtained from L� ¼ D�1

� M�D�
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to be the time of observing empty buffer. Denote by
TeðTe < 1Þ the completion time of downloading of the
tagged flow. If Tb is less than Te, a starvation event happens
at the playout buffer. Then, the ultimate starvation probabil-
ity is computed as

WiðqaÞ ¼ PfTb < TejIð0Þ ¼ i; Qbð0Þ ¼ qag (6)

when the playback begins at state i, and stops at an arbitrary
state that meets an empty queue for the first time. The ulti-
mate starvation probability is the weighted sum of starva-
tion probabilities at all the ergodic entry states.

3 COMPLETE QOE ANALYSIS FOR CBR
STREAMING

In this section, we model the starvation probability and the
prefetching delay in a static channel where the media flows
join and leave the system dynamically. The key idea is to
investigate the queueing process of one “tagged” flow on
the basis of differential equations.

3.1 Markov Models of Flow Dynamics

Our purpose here is to construct two Markov chains to char-
acterize the dynamics of the number of active flows. The
first one models flow dynamics before the “tagged” flow
joins in the network. Based on this Markov process, we can
compute the stationary distribution of the number of active
flows observed by the “tagged” flow at the instant when it
is admitted. The second one describes the flow dynamics
after the tagged flow is admitted. This Markov process ena-
bles us to investigate how the playout buffer of the tagged
user changes.

We first look into the flow dynamics before the tagged
flow joins. When the NSNR scheduling algorithm is used,
the per-flow throughput is proportional to the reciprocal
of flow population. The inter-arrival time of flows is
exponentially distribution due to Poisson flow arrivals.
The service time of a video at a state is equal to the size
of the video in bits divided by its throughput. Because
the video duration is exponentially distributed, the ser-
vice time at a state is also exponentially distributed.
Therefore, the dynamics of the number of coexisting flows
can be depicted by a continuous time Markov chain. This
CTMC consists of a finite number of states for the sake of
the admission control scheme at the base station. We
model the change of number of coexisting flows as a
CTMC Za :¼ f0; 1; . . . ; Kg shown in Fig. 2. The transition
rate from i to i� 1 is mi :¼ CuF . Note that the network
capacity is a constant in the static channel. Hence, we let

mi ¼ m for i ¼ 1; 2; . . . ; K and m0 ¼ 0. Define r :¼ �
m
to be

the load of the channel. Let zai be the stationary probabil-
ity that there exist i flows. We give the expression of
zai ði 2 S [ fKgÞ directly because it is easy to compute,

za0 ¼
1� r

1� rKþ1
; zai ¼

rið1� rÞ
1� rKþ1

; 8i ¼ 1; . . . ; K:

The tagged user cannot be admitted at state K due to the
admission control at the BS. Therefore, if it joins in the net-
work successfully, it will observe i other flows with the
probability pi,

pi ¼ zai
1� zaK

¼ rið1� rÞ
1� rK

; 8i 2 S: (7)

After the tagged flow joins in the network, theMarkov pro-
cess Za has been altered. The states are the number of flows
observed by the tagged user, and the transition rates are con-
ditioned on the presence of the tagged flow. Therefore, we
model the flow dynamics observed by the tagged flow
through a finite-state Markov chain Zb :¼ f0; 1; . . . ;K�1g in
Fig. 3. Denoted by ni the transition rate from state i to i�1. The

per-flow throughput at state i is C
ðiþ1Þ so that there has

ni :¼ iCuF
ðiþ1Þ ¼ i

iþ1m for all i 2 S. For the simplicity of notations,

we denote by �i the transition rate from state i to iþ 1. It is
obvious to have �i ¼ � for all i 6¼ K�1 and �K�1 ¼ 0.

3.2 Modeling Prefetching Delay Distribution

3.2.1 Analysis of Prefetching Delay Distribution

We want to know how long the tagged user needs to wait
in the prefetching phase. Recall that qa is the start-up
threshold. Let q be the video content in seconds stored in
the playout buffer. The prefetching time is only meaning-
ful to the case that the video duration is longer than qa. In
the prefetching phase, because the playout buffer does
not serve video frames, the queue length of the tagged
flow evolves in an infinitesimal time interval ½0; h� with
hð> 0Þ

Qðtþ hÞ ¼ QðtÞ þ bih: (8)

The distribution of the prefetching time is difficult to solve
directly. We resort to the following duality problem:

DUALITY PROBLEM: What is the starvation probability by
time t if the queue is depleted with rate biði 2 SÞ and
the duration of prefetched contents is qa?

In the duality problem, the queue dynamics in ½0; h� is
modified as

~Qðtþ hÞ ¼ ~QðtÞ � bih: (9)

We define Uiðq; tÞ ð8i 2 SÞ to be the probability of starvation
before time t, conditioned on the entry state i and the ini-
tially prefetched content q. We use differential equations to
obtain Uiðq; tÞ. In the infinitesimal time interval ½0; h�, there
are four possible events

� no change of the concurrent flows;
� arrival of one flow;

Fig. 3. Flow dynamics observed by tagged flow.Fig. 2. Markov chain before the tagged flow joins.
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� departure of one flow (not the tagged one);
� occurrence of more than one events.
After an infinitesimal slot h, the queue length decreases

from q to q � bih. The probability that a new streaming flow
arrives is �ih, the probability of the departure of an on-
going flow is nih, and the probability of no change of current
flows is ð1� �ih� nihÞ, according to the principle of embed-
ded Markov chain. Conditioned on the events occurred in
½0; h�, we have

Uiðq; tÞ ¼ ð1� �ih� nihÞUiðq � bih; t� hÞ
þ �ihUiþ1ðq � bih; t� hÞ
þ nihUi�1ðq � bih; t� hÞ þ oðhÞ; 8i 2 S:

(10)

The above equation yields for i 2 S

1

h
ðUiðq; tÞ � Uiðq � bih; t� hÞÞ ¼
�ð�i þ niÞUiðq � bih; t� hÞ þ �iUiþ1ðq�bih; t�hÞ
þ niUi�1ðq�bih; t�hÞ þ oðhÞ=h:

(11)

When h ! 0, the left side of Eq. (11) is the partial differen-
tials of Uiðq; tÞ over q and t. In other words, Eq. (11) yields a
set of linear partial differential equations

@Ui

@t
¼ �bi

@Ui

@q
� ð�i þ niÞUiðq; tÞ

þ �iUiþ1ðq; tÞ þ niUi�1ðq; tÞ; 8i 2 S;

(12)

with the initial condition

Uiðq; 0Þ ¼ 0; 8q > 0 (13)

and the boundary conditions at both sides

Uið0; tÞ ¼ 1; 8 t > 0; (14)

lim
q!1

Uiðq; tÞ ¼ 0; 8 t > 0: (15)

The initial condition in Eq. (13) means that the starvation
cannot happen at time 0 for q > 0. The right-side boundary
condition says that the starvation will not happen before t if
the initial prefetching is large enough.

Remark. The initial condition in Eq. (13) is incomplete since
Uiðq; 0Þ is not a function of q. Comparing Eq. (13) with
Eq. (14), we find that Uiðq; tÞ is discontinuous at
ðq; tÞ ¼ ð0; 0Þ. In this scenario, the direct numerical inte-
gral of the PDEs is usually unstable and the analytical
solution may be inaccurate.

In what follows, we present an explicit solution to the
PDEs, and its approximation. Here, the c.d.f. of start-up
delay is the solution of linear PDEs by letting q be qa. To
solve these linear PDEs, we first define a matrix as

MS ¼
�0 ��0 0 � � � 0 0
�n1 �1þn1 ��1 � � � 0 0
� � � � � � � � � � � � � � � � � �
0 0 � � � � � � �nN�1 nN�1

0
BB@

1
CCA: (16)

According to the lemma in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TMC.2015.2510629, the tri-
diagonal matrixMS is diagonalizable. LetDS be an invertible
matrix, and LS be a diagonal matrix that contains the eigen-

values of MS . Then, there has MS ¼ DSLSD
�1
S . Define a vec-

torGðq; tÞ as a set of step functions that have

Giðq; tÞ ¼ 0 if q � bit > 0;
1 if q � bit � 0:

�
(17)

Then, the linear PDEs in Eq. (12) are solved by

Uðq; tÞ ¼ DS expð�LStÞD�1
S �Gðq; tÞ: (18)

So far, we have derived the explicit c.d.f. of start-up
delay, which only involves a small-scale matrix decomposi-
tion. Detailed analysis can be found in the Appendix, avail-
able in the online supplemental material.

3.2.2 Analysis of Mean Prefetching Delay

Another important metric is the mean completion time of
the start-up process. We denote by Xiðq; qaÞ the expected
start-up delay, given the initial entry state i, the current
buffer duration q and the start-up threshold qa. Following
the similar approach, we examine the events taking place at
an infinitesimal slot ½0; h�. Without restating these events in
details, we notice that the the stored video length increases
from q to q þ bih. The expected time to reach the start-up
threshold increases by h. This gives rise to the dynamics of
Xiðq; qaÞ for i 2 S by

Xiðq; qaÞ ¼ ð1� �ih� nihÞðhþXiðq þ bih; qaÞÞ
þ �ihXiþ1ðq þ bih; qaÞ þ nihXi�1ðq þ bih; qaÞ:

(19)

Taking h small enough, we derive the following set of ordi-
nary differential equations

bi _Xiðq; qaÞ ¼ ð�i þ niÞXiðq; qaÞ � �iXiþ1ðq; qaÞ
� niXi�1ðq; qaÞ � 1; 8i 2 S:

(20)

The boundary condition ofXiðq; qaÞ is given by

Xiðqa; qaÞ ¼ 0; 8i 2 S: (21)

The physical interpretation is that the start-up process ends
immediately if the initial q reaches qa. Let Xðq; qaÞ be a vector
of the expected start-up delays at different states. Define a

matrix MV to be MV ¼ diagf1
bi
g �MS . Then, Eq. (20) can be

rewritten as

_Xðq; qaÞ ¼ MVXðq; qaÞ � f1=big; (22)

where f1=big is a column vector. We have the following
property w.r.t the eigenvalues ofMV .

Lemma 1. The matrix MV has K real non-negative eigenvalues,
and is similar to a diagonal matrix.

Proof. Please refer to the Appendix, available in the online
supplemental material. tu
Based on the above lemma, we have MV :¼ DVLV D

�1
V

where DV is an invertible matrix and LV is the diagonal
matrix containing all the eigenvalues of MV . In the ergodic
Markov matrixMV , one of its eigenvalues is 0. According to
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theory of matrix functions, we can solve the above ODEs
directly by

Xðq; qaÞ ¼ expðMV qÞXð0; qaÞ
�
Z q

0

expðMV ðq � tÞÞ � f1=bigdt

¼ DV expðLV qÞD�1
V Xð0; qaÞ

�DV

Z q

0

expðLV ðq � tÞÞdt �D�1
V f1=big:

(23)

The integral part is obtained by

Z q

0

expðLV ðq � tÞÞdt ¼ diag
1

diV
ðediV q � 1Þ

� �
; (24)

where diV is the ith eigenvalue in the diagonal matrix LV .

The term 1
di
V

ðediV q � 1Þ equals to 1 when diV is 0. Submitting

Eq. (24) to (23), we get the solution of the mean start-up
delay

Xðq; qaÞ ¼ DV expðLV qÞD�1
V Xð0; qaÞ

�DV diag
1

diV
ðediV q � 1Þ

� �
D�1

V

1

bi

� �
:

(25)

In the above equation, the vector Xð0; qaÞ is still unknown.
Since Xiðq; qaÞ is 0 for all i 2 S at the boundary q ¼ qa, the
mean start-up delay is solved by

Xð0; qaÞ¼DV expð�LV qaÞdiag
�

1

diV
ðediV qa�1Þ

�
D�1

V

�
1

bi

�
: (26)

We next analyze the probability that the prefetching pro-
cess starts at state i and ends at state j, for all i; j 2 S. Define

Vi;jðq; qaÞ :¼ PfIðTaÞ ¼ jjIð0Þ ¼ i; Qð0Þ ¼ qg: (27)

We can use the approach of obtaining Uiðq; tÞ to solve
Vi;jðq; qaÞ. Note that we now use the queueing dynamics in
Eq. (8) instead of Eq. (9). In the time interval ½0; h�, there
exists for all i; j 2 S

Vi;jðq; qaÞ ¼ ð1� �ih� nihÞVi;jðq þ bih; qaÞ
þ �ihViþ1;jðqþbih; qaÞ þ nihVi�1;jðqþbih; qaÞ
þ oðhÞ: (28)

It is easy to see that Vi;jðq; qaÞ is the solution of the following
differential equation

bi _Vi;jðq; qaÞ ¼ ð�i þ niÞVi;jðq; qaÞ � �iViþ1;jðq; qaÞ
� niVi�1;jðq; qaÞ; 8i; j 2 S;

(29)

with the boundary condition

Vi;jðqa; qaÞ :¼ 1 if i ¼ j;
0 otherwise:

�
(30)

We interpret the boundary condition in the following way.
If there exist Ið0Þ ¼ i and Qð0Þ ¼ qa, the prefetching dura-
tion is 0 and the prefetching process ends at state i. Hence,

Vi;jðqa; qaÞ is 1 iff i equals to j. Recalling MV ¼ diagf1
bi
g �MS .

Define 1j to be a column vector in which the jth element is 1
and all other elements are 0. Eq. (28) can be rewritten as

_Vðq; qaÞ ¼ MVVðq; qaÞ: (31)

Then, Vðq; qaÞ is solved by

Vðq; qaÞ ¼ expðMV qÞ �Vð0; qaÞ: (32)

Eq. (32) is expressed as

Vðq; qaÞ ¼ DV expðLV qÞD�1
V �Vð0; qaÞ: (33)

Submitting Eq. (30) to Eq. (33), we yield

Vðq; qaÞ ¼ DV expðLV ðq � qaÞÞD�1
V �Vðqa; qaÞ: (34)

3.3 Modeling Starvation Probability

The modeling of starvation probabilities should take into
account the departure of the tagged flow. Recall that the
CTMC in Fig. 3 assumes the persistent tagged flow, which
is not suitable for the playback process. Before solving the
starvation probabilities, we first modify the original CTMC
by adding an absorbing state A shown in Fig. 4. The state A
denotes the event that the tagged flow completes its down-
loading. Because of the exponentially distributed video
duration, the transition from state i to state A is Poisson.
Denote by ’i the transition rate from state i to A. At state i,

the bandwidth of a flow is C
iþ1, resulting in ’i :¼ m

iþ1. Define

ci :¼ bi � 1. The queue length of the tagged flow changes in
an infinitesimal interval h according to the rule

Qðtþ hÞ ¼ QðtÞ þ cih: (35)

If ci > 0, the bandwidth is sufficient for continuous play-
back of the tagged flow and i other flows. For mathematical
convenience, we suppose that q is 0� if buffer starvation
happens. When the tagged flow enters the absorbing state,
it has downloaded the whole file with a non-empty playout
buffer. Thus, the starvation probability at state A is 0 for
any q � 0. Let WiðqÞ be the starvation probability with q sec-
onds of contents in the playout buffer at state i. We derive a
system of ordinary differential equations for WiðqÞ. In an
infinitesimal interval ½0; h�, there are five possible events:

� no change of the concurrent flows;
� arrival of one more flow;
� departure of one flow (not the tagged flow);
� the tagged flow entering the absorbing state;
� occurrence of more than one events.

Fig. 4. Markov chain for user dynamics with an absorbing state for depar-
ture of tagged flow.

XU ETAL.: FLOW-LEVEL QOE OF VIDEO STREAMING IN WIRELESS NETWORKS 2769

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 04,2023 at 04:36:12 UTC from IEEE Xplore.  Restrictions apply. 



The above conditions give rise to the a set of equations

WiðqÞ ¼ ð1� ð�i þ miÞhÞWiðq þ cihÞ þ �ihWiþ1ðq þ cihÞ
þ nihWi�1ðq þ cihÞ þ oðhÞ:

(36)

When h ! 0, we obtain

ci _WiðqÞ ¼ ð�i þ miÞWiðqÞ � �iWiþ1ðqÞ � niWi�1ðqÞ (37)

with the initial conditions

Wið0Þ ¼ 1; if ci < 0 8i (38)

and the boundary conditions

lim
q!1WiðqÞ ¼ 0; 8i: (39)

Here, Wð0Þ denotes the starvation probabilities with no ini-
tial prefetching. The boundary conditions are WiðqÞ ¼ 0 for
all i as q approaches infinity. The above equations can be
rewritten in the matrix form

_WðqÞ ¼ MWWðqÞ; (40)

whereMW is expressed in Eq. (41)

�0þm0
c0

� �0
c0

0 � � � 0 0

� n1
c1

�1þm1
c1

� �1
c1

� � � 0 0
� � � � � � � � � � � � � � � � � �
0 0 � � � � � � � nN�1

cN�1

mN�1þ�N�1
cN�1

0
BBB@

1
CCCA: (41)

The solution to Eq. (40) is given directly by

WðqÞ ¼ expðMWqÞ �Wð0Þ: (42)

Note that Wið0Þ ¼ 1 holds for all i if ci < 0 and Wið0Þ are
unknowns for all i with ci > 0. Using the proof of Lemma
1, we can show that MW is similar to a diagonal matrix.
There exists an invertible matrix DW and a diagonal matrix

LW such that MW :¼ DWLWD�1
W . The starvation probabili-

tiesWðqÞ are expressed as

WðqÞ ¼ DWexpðLWqÞD�1
W �Wð0Þ: (43)

The eigenvalues in LW are sorted in a decreasing order.
According to Gershgorin circle theorem [30], the signs of
eigenvalues are uncertain since the centers of the Gersh-
gorin circles can be positive or negative. Based on the signs
of ci for i 2 S, we obtain the following corollary without
proof due to its simplicity.

Corollary 1. Suppose that ci is positive for 0 � i < k and is neg-
ative for k � i < K. The matrix MW has k positive eigenval-
ues andK�k negative eigenvalues.

The unknowns in Wð0Þ can be solved subsequently.

Define a vector �W :¼ D�1
W �Wð0Þ. When q is infinitely large,

WðqÞ is a zero vector, resulting in expðLWqÞD�1
W �Wð0Þ ¼ 0.

Because the first k eigenvalues are positive in LW , there

must have �Wi ¼ 0 for i < k. Hence, the unknowns Wið0Þ
for i < k can be derived.

Next, we build a bridge to interconnect the prefetching
threshold and the starvation probability function WiðqÞ. For
a given prefetching threshold qa, the starvation event takes
place only when the video duration Tvideo is longer than qa.
This is to say, a flow with Tvideo > qa can be regarded as a
tagged flow. When the prefetching process is finished, the
tagged flow enters the playback process. Conditioned on
the distribution of entry states p, the distribution of the
states that the playback process begins (or the prefetching
process ends) is computed by p �Vð0; qaÞ. Then, the starva-
tion probability with the prefetching threshold qa is
obtained by

PsðqaÞ ¼ PfTvideo > qag � p �Vð0; qaÞ �WðqaÞ
¼ exp

��uqa
� � p �Vð0; qaÞ �WðqaÞ:

(44)

3.4 Modeling P.G.F. of Starvation Events

When a starvation event happens, the media player pauses
until qb seconds of video contents are re-buffered. A more
interesting but challenging problem is how many starva-
tions may happen in a streaming session. In this section, we
come up with an approach to derive the probability generat-
ing function of starvation events.

We define a path as a sequence of prefetching and starva-
tion events, as well as the event of completing the down-
loading. Obviously, the probability of a path depends on
the number of starvations. We illustrate a typical path with
L starvations in Fig. 5 that starts from a prefetching process

and ends at a playback process. We denote by IAl the begin-

ning state of the lth prefetching, by IBl the beginning state of
the lth playback, and by Ie the end of downloading. The
end of a prefetching process is exactly the beginning of a
playback process. The end of a playback process is also the
beginning of a subsequent prefetching process if the video
has not been downloaded completely. This path contains

a sequence of events happening at the states fIA1 ; IB1 ; IA2 ;
IB2 ; . . . ; I

A
Lþ1; I

B
Lþ1; Ieg. The process between IAl and IBl is the

lth prefetching process, while that between IBl and IAlþ1 is

the lth playback process, (1 � l � L). The first starvation

Fig. 5. A path with L starvations.
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takes place at the instant that the second prefetching process

begins. The starvation event (e.g., IBl ; 1 � l � L) cannot
happen at the state i that has ci � 0.

The sample path in Fig. 5 demonstrates a roadmap to
find the p.g.f. of starvation events. We need to compute the
transition probability along the path with all possible states.
Recall that the transition probabilities from state IAl to IBl
have been computed in Section 3.2. The only missing part is

the transition probabilities from state IBl to IAlþ1.

Denote by Yi;jðqÞ the probability that a playback process
starts at state i and meets with the empty buffer at state j
with the prefetching threshold q. Define a matrix
YðqÞ :¼ fYi;jðqÞ; i; j 2 Sg. Denote by YjðqÞ the vector of prob-
abilities that the starvation takes place at state j with the

prefetching threshold q, i.e. YjðqÞ :¼ ½Y0;jðqÞ; . . . ; YK�1;jðqÞ�T .
Let Yjð0Þ :¼ ½Y0;jð0Þ; . . . ; YK�1;jð0Þ�T be the vector of those
probabilities without the prefetching. Using the same argu-
ment, we get the differential equation of Yi;jðqÞ, 8i; j 2 S,

ci _Yi;jðqÞ ¼ ð�i þ miÞYi;jðqÞ � �iYiþ1;jðqÞ � niYi�1;jðqÞ: (45)

The solution of Eq. (45) is directly given by

YjðqÞ ¼ DWexpðLWqÞD�1
W � Yjð0Þ: (46)

The computation of YjðqÞ requires the knowledge of the
boundary condition Yjð0Þ. Here, Yi;jð0Þ ¼ 0; i 6¼ j and
Yi;jð0Þ ¼ 1 if ci < 0, and Yi;jð0Þ ¼ 0 if cK�1 � 0. The compu-
tation of remaining Yi;jð0Þ follows the same approach as
that in the computation ofWið0Þ.

When replacing q by qa, we obtain the probability YijðqaÞ
that the first starvation happens at state j with i other flows
observed by the tagged flow at the beginning of the play-
back process. The starvation probability in a rebuffering
process is calculated by YijðqbÞ, given the rebuffering thresh-
old qb.

The probability of having L starvations can be expressed
as the product of the probabilities from the first prefetching

to the last playback. The probability vector from IA1 to IB1 is
obtained by

fPIA
1
!IB

1
g ¼ p � exp��uqa

� �Vð0; qaÞ; 8IA1 ; IB1 2 S: (47)

The probability vector from IA1 to IA2 is,

fPIA
1
!IA

2
g ¼ fPIA

1
!IB

1
g � YðqaÞ

¼ p � exp��qau
� �Vð0; qaÞ � YðqaÞ; 8IA1 ; IA2 2 S: (48)

Recall that the starvation happens at state IA2 , and the

rebuffering process ends at state IB2 with the prefetched
video duration qb. We next compute the probability of
having only one starvation denoted by P1starv. The possi-

ble paths include fIA1 ; IB1 ; IA2 ; Ieg and fIA1 ; IB1 ; IA2 ; IB2 ; Ieg.
The first part of P1starv refers to the case that the remain-
ing video duration is less than the rebuffering threshold
qb. The second part refers to the case that the remaining
video duration is longer than qb and there is no starvation
after the rebuffering process,

P1starv ¼ fPIA
1
!IA

2
g � 1 � �1� expð�qbuÞ

�
þ fPIA

1
!IB

2
g � ð1�WðqbÞÞ

¼ p � exp��qau
� �Vð0; qaÞ �WðqaÞ �

�
1� expð�qbuÞ

�
þ pexp

��ðqaþqbÞu
�
Vð0; qaÞYðqaÞVð0; qbÞð1�WðqbÞÞ:

(49)

Here, the expression ð1�WðqbÞÞ is the probability IA2 ! Ie
in the first path and the expression ð1�WðqbÞÞ is that of

IB2 ! Ie in the second path. Similarly, we can deduce the
probability of having LðL > 1Þ starvations recursively by

PLstarv ¼ fPIA
1
!IA

Lþ1
g � 1 � �1� expð�qbuÞ

�
þ fPIA

1
!IB

Lþ1
g � ð1�WðqbÞÞ

¼ p � exp��qau
� �Vð0; qaÞYðqaÞ

�
�
exp

��qbu
�
Vð0; qbÞYðqbÞ

�L�1

� 1 � �1� expð�qbuÞ
�

þ p � exp�� ðqa þ qbÞu
� �Vð0; qaÞYðqaÞ �

�
exp

��qbu
�

�Vð0; qbÞYðqbÞ
�L�1

�Vð0; qbÞ � ð1�WðqbÞÞ:
(50)

Though the expression in Eq. (50) looks complicated, it only
involves duplicated products of matrices with dimension K
that can be calculated easily.

4 VBR STREAMING: MODELING QOE

In this section, we investigate the QoE of variable bit rate
streaming. We introduce a diffusion process to model the
variation of playback rate.

4.1 Queueing Model of VBR Streaming

In VBR, the frame size depends on the video scenario. For
instance, the complex segments of video clips require more
bits to render each frame than the simple segments. Then,
the playback process exhibits the variation of service rate.
The complex and the simple segments occur randomly, pro-
ducing a mean playback rate. In this context, an important
question is whether the jittering of playback rate signifi-
cantly influences the starvation behavior or not.

In VBR streaming, the video file size is exponentially dis-
tributed with the mean 1=uF . Therefore, the Markovian
property of flow departure still holds in Figs. 2, 3, 4 and the
transition rates remain the same as in Section 3. Whereas
the video duration follows a general distribution. We define
the mean playback rate to be Bitrate. The mean frame size

is written as Bitrate
25 with frame rate 25 fps. Denote by s the

standard deviation of video frames. The total variance of

video frames is 25s2 in one second.
We define an Itô process fSðtÞg to describe the total ser-

vice measured in the duration of video contents by time t.
The Itô process fSðtÞg satisfies the following stochastic dif-
ferential equation

dSðtÞ ¼ Sðtþ hÞ � SðtÞ ¼ 1 � hþ �sdBh; (51)

where B is the standard Wiener process and the subscript h
denotes the duration. The process Bh satisfies Bhjh¼0 ¼ 0,

E½Bh� ¼ 0 and the derivative dBh ¼ ffiffiffi
h

p Nð0; 1ÞwhereNð0; 1Þ
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is the standardNormal distribution. In Eq. (51), the parameter
�s denotes the standard deviation of video playback in a unit
time. Hence, given the playback starting at time 0, the total

variance of SðtÞ is Var½SðtÞ� ¼ �s2Var½Bt� ¼ t�s2. At the unit

time t ¼ 1 second, there has Var½Sð1Þ� ¼ �s2. Remember that
25 frames are served in one second. The total variance of

served bits is thus 25s2. When it is re-scaled by the video
bitrate (measured in the duration of video contents), the vari-

ance is expressed as 25s2

Bitrate2
. Therefore, we obtain the mapping

�s ¼ 5s
Bitrate.

Remark. The service process of VBR differs from that of
CBR in that the former has a diffusion part. Their gap,
reflected by �s, is determined by the standard deviation
of video frame size s in VBR and the mean bit-rate. How-
ever, s and the mean bit-rate are positively correlated.
When the mean bit-rate becomes small, s is also small
such that �s may not decrease obviously.

In this section, we integrate the playback perturbation
with the fluid-level flow dynamics. The method employed
here is inspired by the ruin analysis in actuarial science [24],
[25]. With the continuous time assumption, we use the dif-
fusion process SðtÞ to describe the queueing dynamics with
the perturbation of playback rate. The continuous time
queueing process in the prefetching phase, fQaðtÞ; t � 0g, is
defined as

QaðtÞ ¼
XNeðtÞ

l¼1

bIlðAl �Al�1Þ þ bINeðtÞ ðt�ANeðtÞÞ þ �sBt: (52)

Similarly, the queueing process in the playback phase,
fQbðtÞ; t � 0g, is expressed as

QbðtÞ ¼ qa þ
XNeðtÞ

l¼1

cIlðAl �Al�1Þ þ cINeðtÞ ðt�ANeðtÞÞ þ �sBt:

(53)

For the VBR streaming, the starvation can be caused by
either the playback rate variation in small time scales or the
flow dynamics in large time scales.

4.2 Starvation Probability

The computation of starvation probability uses the similar
approach as the one in Section 3. All possible events that
take place in an infinitesimal time interval are taken into
account. Conditioned on the flow dynamics and throughput
perturbation in ½0; h�, we have

WiðqÞ ¼ð1� �ih� mihÞWiðq þ cihþ dBhÞ
þ �ihWiþ1ðq þ cihþ dBhÞ
þ nihWi�1ðq þ cihþ dBhÞ þ oðhÞ; 8i 2 S:

(54)

The above equations yield

1

h
� �Wiðq þ cihþ dBhÞ �WiðqÞ

� ¼ ð�i þ miÞWiðq þ cihþ dBhÞ

� �iWiþ1ðq þ cihþ dBhÞ � niWi�1ðq þ cihþ dBhÞ þ oðhÞ
h

:

(55)

As h ! 0, the left-side of Eq. (55) is expressed as

E
1

h

�
Wiðq þ cihþ dBhÞ �WiðqÞ

�	 

¼ ci _WiðqÞ þ 1

2
�s2 €W ðqÞ;

(56)
according to [25]. Submitting (56) to (55), we obtain

a €WiðqÞ þ ci _WiðqÞ � ð�i þ miÞWiðqÞ þ �iWiþ1ðqÞ
þ niWi�1ðqÞ ¼ 0; 8i 2 S;

(57)

where€denotes the second order derivative. The constant a

equals to 1
2
�s2. The boundary conditions satisfy

Wið0Þ ¼ 1; 8i 2 S; (58)

_Wið1Þ ¼ 0; 8i 2 S: (59)

The starvation probability with no initial prefetching is 0
because the queueing process is oscillating very fast. The
queue length will go “below” 0 immediately for sure. When
q is infinitely large, the starvation probability WiðqÞ is 0. But
WiðqÞ approaches 0 gradually, giving rise to the first-order

derivative _Wið1Þ ¼ 0. We denote by ZðqÞ :¼ fW0ðqÞ; . . . ;
WK�1ðqÞ; _W0ðqÞ; . . . ; _WK�1ðqÞg. We further define two matri-
ces, Z3 and Z4, that have the following forms:

Z3 ¼ diagfci=ag �MW and Z4 ¼ diagf�ci=ag:
Then, equations in (57) are rewritten in the matrix form

_ZðqÞ ¼ MZZðqÞ ¼ 0 I
Z3 Z4

	 

� ZðqÞ: (60)

The solution to Eq. (60) is thus given by

ZðqÞ ¼ expðMZqÞ � Zð0Þ: (61)

Since Z3 is similar to a symmetric tridiagonal matrix and Z4

is a diagonal matrix, we make the following conjecture.

Conjecture 1. The matrix MZ has 2K real eigenvalues, and

can be expressed as MZ ¼ DZLZD
�1
Z , where DZ is an

invertible matrix and LZ is a diagonal matrix.

On the basis of the above conjecture, Eq. (61) is substi-
tuted by

ZðqÞ ¼ DZ expðLZqÞD�1
Z � Zð0Þ: (62)

5 SIMULATION

In this section, we compare the numerical experiments with
the developed framework using MATLAB. Our model
exhibits excellent accuracy.

5.1 Constant Bit-Rate Streaming

We consider a network with maximum number of ten
simultaneous streaming flows and the capacity of 2.5 Mbps.
Flows arrive to the network with a Poisson rate � ¼ 0:12.
Let the video duration be exponentially distributed with the
mean 60 seconds. Then, there have m ¼ 0:1302 and
r ¼ 0:9216 at the playback rate 360 Kbps, and m ¼ 0:0868
and r ¼ 1:3824 at the playback rate 480 Kbps. The simula-

tion lasts 5	 105 seconds.
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5.1.1 Starvation Probabilities

In this set of experiments, we will illustrate the overall star-
vation probability, the starvation probabilities when the
playback process begins at different states, as well as the
p.g.f. of starvation events.

Fig. 6 shows the overall starvation probabilities with dif-
ferent settings of the start-up threshold. When it increases
from 0 to 20 s of video contents, the starvation probability
decreases. The higher playback rate (e.g., 480 Kbps) incurs
larger starvation probabilities in comparison with the lower
playback rate (e.g., 360 Kbps). Our mathematical models
match the simulations very well.

Fig. 7 compares the starvation probabilities when the
playback process begins at different states. A higher state
refers to more coexisting flows (or congestions), and hence
causing a larger starvation probability. Note that the arrival

rates at state 7 and 9 are less than 360 Kbps. Without pre-
fetching, the starvation event happens for sure.

We further evaluate the probabilities of having one or two
starvations in the whole procedure. For clarity, we choose
the same value for the start-up and re-buffering thresholds.
As shown in Fig. 8, the starvation probabilities increase in
the beginning and decrease afterwards when qa (or qb)
increases from 0 to 30 s of video segment. This is because
there are many starvations with very small start-up thresh-
old and few starvations with very large start-up threshold.
Our analytical models predict the starvation probabilities
accurately.

5.1.2 Start-Up Delay

We illustrate the distribution of start-up delays in Figs. 9
and 10. The start-up threshold is set to 10 s and the play-
back rate is 360 Kbps. We highlight the CDF curves when
the tagged flow sees 3; 5; 7 and 9 other flows respectively
after entering the network. The CDF curves in Fig. 9 are
computed using MATLAB PDE integral function pdepe.
For the cases Ið0Þ ¼ 3; 5; 7, the direct numerical integrals
coincide with the experiments quite well. However, when
the cumulative probability is close to 1, the numerical
integral may oscillate (e.g., in the case Ið0Þ ¼ 9). This is
because the initial condition Uið0; 0Þ is discontinuous in
Eqs. (13) and (15).

In Fig. 10, we compute the c.d.f. of start-up delay
using our explicit model in Eq. (18). Due to the discontin-
uous and incomplete initial condition, the explicit model
results in a set of piece-wise curves. One can observe that
each pair of CDF curves from the explicit model and
from the experiments have a very similar trend as time t

Fig. 8. Probability of observing one and two starvations.

Fig. 6. Overall starvation probability versus start-up threshold. Fig. 9. CDF of start-up delay with qa ¼ 10 s: direct integral method.

Fig. 7. Starvation probabilities at different playback states with a play-
back rate 360 Kbps.

Fig. 10. CDF of start-up delay with qa ¼ 10 s: analytical solution and its
approximation.
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increases. However, their gap is large. Here, we propose
a heuristic approximation technique to bridge this gap. A
set of piece-wise lines are introduced to replace the CDF
curves obtained from the explicit model. In the CDF
curve of the explicit model, there exist a certain number
of horizontal lines. Each horizontal line has two edges,
the left one and the right one. If both two adjacent hori-
zontal lines are above 0.5 (we usually refer to that the left
edge is above 0.5), two left edges are connected. If both
two lines are below 0.5, two right edges are connected. If
one horizontal line is below 0.5 and the other is above
0.5, we connect the right edge of the lower horizontal
line with the left edge of the upper horizontal line. This
approximation is illustrated by the dashed lines in red.
Though there lacks of a rigid justification of our approxi-
mation, we do observe that this technique is rather accu-
rate in most of the experiments, and is also very simple.

We evaluate the mean start-up delay of a video stream
at different entry states in Fig. 11. The adopted start-up
thresholds are 20 and 30 s respectively. The video bitrate
is 480 Kbps. The proposed model matches the experi-
ments well. The ratios of the mean start-up delays with
different qa are close to 2=3, which is the ratio of their
start-up thresholds.

5.2 Variable Bit-Rate Streaming

We evaluate the QoE metrics of VBR streaming with a
different set of parameters. The bandwidth is set to
2.0 Mbps, and the flow arrival rate is set to 0.08. Each
video streaming has the mean playabck rate of 360 Kbps
and a frame rate 25 fps. The size of video files are

exponentially distributed with the mean 2:16	 107 bits
(equivalent to 60 s with the playback rate 360 Kbps).
Then, the traffic load of the system is given by r ¼ 0:864.
The per-flow throughput in states 5 
 9 are insufficient to
support the mean playback rate.

We first investigate how the playback variance influen-
ces the prefetching and the playback processes. Fig. 12
shows the starvation probabilities when the start-up
threshold and the variance change. When a ¼ 0:01, the
starvation probabilities computed from the VBR model
are the same as those computed from the CBR model.
While they differ greatly with a ¼ 1. For the case a ¼ 1,
the jittering of playback rate influences the starvation
probability more with qa ¼ 2 than with qa ¼ 8. Fig. 13 com-
pares the probabilities that the prefetching process ends at
the state 2 and 7 respectively. From this set of experiment,
we can see that even a ¼ 0:5 does not obviously influence
the prefetching.

Fig. 14 compares the numerical results of VBR stream-
ing with the model for CBR streaming. In our simula-
tion, the mean frame size is 14,400 bits. According to
[21], the video frame size roughly follows Erlang distri-
bution. If the Erlang distribution is the sum of k i.i.d
exponentially distributed r.v.s., the mean of these r.v.s.
is 14;400=k. We consider two cases in this set of experi-
ments, k ¼ 1 (i.e., exponential r.v.) and k ¼ 3. The resulting

variances are �s2 ¼ 0:04 (i.e., a ¼ 0:02) for k ¼ 1 and

�s2 ¼ 0:013 (i.e., a ¼ 0:0066) for k ¼ 3. The simulation time is

3	 106 playback slots. From Fig. 14, we are surprised to see
that the Erlang distributions of video frames do not

Fig. 11. Mean start-up delay with qa ¼ 20 or 30 s and 480 Kbps play-
back rate.

Fig. 12. Starvation probabilities at all states with d ¼ 0:01 and 0:5 com-
puted by models.

Fig. 13. Probabilities that prefetching process starts from a state (from 0
to 9) and ends at state 2 or 7 with d ¼ 0:01 and 0:5.

Fig. 14. Starvation comparison among VBR of different frame size distri-
butions and CBR model.
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obviously influence the starvation probabilities. The analyti-
cal framework for CBR streaming is good enough to model
the starvation behavior for VBR streaming.

5.3 Non-Exponential Video Length Distribution

The type of video length distribution varies with regard to
the type of content. A measurement study in [37] shows the
distributions of Youtube video duration for four most popu-
lar categories: music, entertainment, comedy and sports
videos. The authors find that most of the entertainment,
comedy and sports videos are short. They are likely to fol-
low exponential distribution or lognormal distributions.
Inspired by this observation, we want to evaluate the accu-
racy of proposed models experimentally when the bench-
mark exponential video length distribution does not hold.
Here, the lognormal and Pareto distributions are consid-
ered. To enable fair comparison, we let all the distributions
have the identical mean video length.

We consider three different lognormal distributions
whose mean and variable of the corresponding normal dis-
tribution are (1.0, 3.5943), (1.2, 3.3743) and (1.5, 2.9693)
respectively. Two Pareto distributions are analyzed with
the set of parameters (30, 2) and (20, 1.5). The first parameter
of Pareto distribution represents the minimum length for
all the videos. Note that all the different set of parameters
yield the same mean video length (i.e., 60 s). Figs. 15 and 17
illustrate probability density functions (PDFs) of the above
distributions in contrast to the exponential distribution. The
PDFs of lognormal and Pareto distributions do not resemble
that of the exponential distribution.

Our purpose is to examine whether the starvation prob-
ability with lognormal and Pareto video length distribu-
tions can be well predicted by the model with exponential
distribution. In Figs. 16 and 18, we plot the starvation
probability via simulations as the start-up threshold
increases from 0 to 20 s. For lognormal distribution, when
the set of parameters are (1.0, 3.5943) and (1.2, 3.3743), the
starvation probabilities in our simulations are very close to
the model for the exponential distribution. If we retrospect
to Fig. 17, their PDFs are also close to that of exponential
distribution. For the lognormal distribution with the set of
parameters (1.5, 2.9693), the peak value of its PDF curve is
0.042 while that of the exponential distribution is 0.0167.
This implies that these two distributions are quite distinct.
As a result, the model for exponential distribution loses its
accuracy in this case. In term of Pareto video length distri-
bution, the first parameter determines the minimum video
length. Let us take the set of parameters (30, 2) as an exam-
ple. According to Fig. 17, the PDF curve of the Pareto dis-
tribution is above that of the exponential distribution if the
video length is less than 72 s, and is below that vice versa.
This implies that the Pareto distribution has less short and
less long videos than the exponential distribution. There-
fore, in comparison to exponential distribution, the starva-
tion probability of this Pareto distribution is larger with a
short start-up threshold for there are less short videos. As
the start-up threshold becomes relatively larger, the starva-
tion probability of the Pareto distribution is smaller for
there are less long videos. Our simulations in Fig. 18 vali-
date the above observations. To summarize, our model

Fig. 17. Comparison of probability density functions of Pareto and expo-
nential distributions with the same expectation.

Fig. 18. Starvation probability with lognormal distribution of video
duration.

Fig. 15. Comparison of probability density functions of lognormal and
exponential distributions with the same expectation.

Fig. 16. Starvation probability with lognormal distribution of video duration.
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well captures the trend of starvation probability as the
start-up threshold increases. Even the distribution of video
length is no longer exponential, the proposed model can
still accurately predict the starvation probability for a vari-
ety of distributions.

6 EXTENSION TO FAST FADING

This section models the starvation behavior of CBR stream-
ing when users experience fast channel fading. We compute
the first two moments of bit arrival process and show how
these parameters can be feed into our analytical framework.

6.1 Network Description

Due to the change of radio condition (e.g., user mobility, or
a car passing by the user), the signal strength is no longer a
constant at different scheduling slots. To explore the multi-
user diversity gain, the base station adopts the normalized
SNR scheduling algorithm for allocating time slots to coex-
isting flows.

We begin with the scenario with a fixed population of i
users (or flows) served by a single base station. In each slot,
the users measure their channel qualities and feedback them
to the BS. Based on the channel quality indications, the BS
transmits to only one of the users every slot. Denote by gj;n
the instantaneous signal to noise ratio of user j, (1 � j � i), at
slot n. As stated in most of previous work, we assume that all
the users experience Rayleigh fast-fading. Denote by �gj the

average SNR of user j. Then, the received SNR of user j is an
exponentially distributed random variable with the following

probability density function gjðgÞ ¼ 1
�gj
expð� g

�gj
Þ: The NSNR

scheduler selects the user that has the highest relative SNR for
transmission, j�n ¼ maxjfgj;n=�gj; j ¼ 1; 2; . . . ; ig; where j� is

the scheduled user at slot n. In this section, we consider the
case of homogeneous average SNRs (i.e., �gj ¼ �g for all j).

Therefore, the NSNR scheduler is equivalent to themaximum
sum rate (MSR) scheduler that gives the largest per-user
throughput. Since the SNRs of different users are indepen-
dently distributed, the scheduled SNR, denoted by g�, has the
following probability density function [26] g�ðgÞ ¼ i

�g expð� g
�gÞ

ð1� expð� g
�gÞ
�i�1

: Denote by fðgÞ the data rate of a user with

the SNR g. Here, fð�Þ can be a linear function in the low-SNR
regime and a logarithmic function in the high SNR regime if
the modulation scheme is continuous. For discrete modula-
tions, fð�Þ is a step function of g. Without loss of generality,
we let fðgÞ ¼ log2ð1þ gÞ.

6.2 Analysis of Throughput Process

The fast fading along with NSNR scheduling brings varia-
tion of bit arrivals to the receiver. The analytical framework
for VBR streaming can be naturally extended to this sce-
nario. The only modification lies in that the jittering of play-
back rate is substituted by that of bit arrivals. Therefore, we
need the knowledge of the mean throughput and its vari-
ance measured in the duration of video contents. To achieve
this goal, we must obtain the mean throughput and its vari-
ance measured in bits first.

Denote by r�i the transmission rate of the user with the
best SNR at a slot in each Hz when there are i active

flows in the cell. Denote by ri the transmission rate to one
particular flow at a slot per Hz. Given the assumption that
all the flows have the same average SNR, each flow
has the equal probability of being scheduled. Hence, we
can see

ri :¼ r�i w.p. 1
i ;

0 w.p. i�1
i :

�
(63)

For the r.v. r�i , its mean and variance are computed by

E½r�i � ¼
Z 1

0

fðgÞ � g�ðgÞdg; (64)

Var½r�i � ¼
Z 1

0

fðgÞ2 � g�ðgÞdg � ðE½r�i �Þ2: (65)

The Eqs. (63)-(65) yield

E½ri� ¼ 1

i
E½r�i �; (66)

Var½ri� ¼ E½r2i � � ðE½ri�Þ2 ¼ 1

i
E½ðr�i Þ2� �

1

i2
ðE½r�i �Þ2

¼ 1

i
Var½r�i � þ ðE½r�i �Þ2

1

i
� 1

i2

� �
:

(67)

Denote by s the duration of scheduling slot (usually 2 ms),
and by B the width of wireless spectrum in Hz. Then, the
mean and the variance of per-flow throughput measured in

the duration of video contents are B�s�E½ri�
Bitrate and ð B�s

BitrateÞ2 �Var½ri�
respectively in one slot.

Let Ri be the r.v. of per-flow throughput in one second
that is measured by the duration of video contents. In one
second, the total throughput of a flow at one Hz is the

sum of throughput in 1
s slots. Therefore, the r.v. Ri is the

sum of 1
s i.i.d r.v.s corresponding to the per-slot through-

put. We can express the mean and the variance of Ri as
follows:

E½Ri� ¼ 1

s
� B � s � E½ri�

Bitrate
¼ B � E½r�i �

i �Bitrate
; (68)

Var½Ri� ¼ 1

s
�
�

B � s
Bitrate

�2

�Var½ri�

¼
�
1

i
Var½r�i � þ ðE½r�i �Þ2ð

1

i
� 1

i2
Þ
�
� B2 � s
Bitrate2

:

(69)

6.3 Why Does Throughput Variation of Fast Fading
Have Very Limited Impact on Starvations?

In general, the frequency width B is 1
5 MHz, the bit-rate is
usually greater than 200 Kbps, and s equals to 0.002 s. Then,

Var½Ri� is usually at the order of 10�2. If starvation happens
at state i, E½Ri� is usually less than 1, which means that

B
Bitrate needs to be small. However, the small B

Bitrate results in

the small variance Var½Ri�. This is to say, if the variance of
bit arrival process is large, there might not exist starvations.
On the contrary, if the starvations appear, the variance is
usually small so that its impact on the starvation is negligi-
ble. For this reason, we directly use the framework without
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diffusion approximation to model the streaming QoE in a
fast fading channel.

6.4 Markov Model of Flow Dynamics

To analyze the interaction between NSNR scheduling and
the flow dynamics, a fluid-level capacity model is required.
When the average SNR of all active users are the same, the
per-flow throughput in each slot is i.i.d and only depends
on the quantity of flows (see Eq. (64)). Given the exponen-
tially distributed video size, we can model the flow dynam-
ics as a Markov process.

The Markov processes in Figs. 2, 3, 4 contain transi-
tions rates such as mi; ni and ’i. However, it is not direct
to feed the parameters of this section into the above Mar-
kov processes. In Fig. 2, state i refers to the number of
flows in the system. The departure rate is computed by
mi ¼ iuE½Ri� for i 2 S [ fKg, recalling that E½Ri� is aver-
age per-user throughput in video duration per second. It
is easy to obtain the stationary distribution of having i
flows by

zai ¼
�iQi
l¼1 ml

1þ
XK
j¼1

�jQj
l¼1 ml

" #�1

; 8i ¼ 0; . . . ; K;

(with the convention that
Q

over an empty set is 1). When a
tagged user joins in the system and is also admitted, it
observes i other flows with the following stationary distri-
bution fpg :

pi ¼ zai
1� zaK

¼
�iQi

l¼1
ml

1þPK�1
j¼1

�jQj

l¼1
ml

; 8i 2 S:

The Markov processes shown in Figs. 3 and 4 are condi-
tioned on the existence of the tagged flow. At state i, the
per-user throughput is E½Riþ1� because there are i flows
plus the tagged one. Hence, the transition rate ni is com-
puted by ni :¼ iu � E½Riþ1� for all i 2 S. The transition rate ’i

is expressed as ’i :¼ u � E½Riþ1�. Define ~mi as the total depar-
ture rate at state i that has

~mi :¼ ’i þ ni ¼ ðiþ 1ÞuE½Riþ1� ¼ miþ1; (70)

in the presence of the tagged flow. The constants bi and ci
are obtained by

bi ¼ E½Riþ1� and ci ¼ bi � 1; 8i 2 S: (71)

Substituting the above parameters to the framework in
Section 3, we can derive the approximated QoE metrics in a
fast fading channel with flow dynamics.

6.5 Numerical Examples

Consider a wireless channel with frequency width of
1 MHz. The average SNRs of users is 5 dB. The base sta-
tion allows at most 10 flows simultaneously, and sched-
ules the transmission to one of them in every slot of
duration 0.002 s. The video duration is exponentially dis-
tributed with the mean of 90 seconds and the video bit
rate is chosen to be 480 Kbps. Then, the mean throughput
are f3.5749, 2.3702, 1.7844, 1.4369, 1.2061, 1.0412, 0.9174,
0.8207, 0.7432, 0.6794g times the playback rate at states
from 0 to 9. In other words, the mean throughput at states
6
9 are insufficient to support the continuous playback.
The variances at all states are f0.0083, 0.0144, 0.0144,
0.0134, 0.0124, 0.0114, 0.0105, 0.0098, 0.0091, 0.0086g,
which are small enough. We consider two flow arrival
rates, � ¼ 0:07 and � ¼ 0:09. For � ¼ 0:07, the traffic load
r is greater than 1 at states 0
5 and less than 1 at states
6
9. For the latter case, there have r > 1 at all the states.

Each set of simulation lasts 2	 107 time slots.
Though we have demonstrated the reason that fast fad-

ing has very limited impact on the starvations, it is neces-
sary to validate our claim through numerical examples.
In Fig. 19 we compare the starvation probabilities mea-
sured from a Rayleigh fading channel, and those com-
puted from the model without considering throughput
variation. The simulation matches the model quite well,
which means that the flow-level dynamics have a domi-
nant impact on the playback interruption, while the
impact of throughput variation due to Rayleigh fading is
negligible. In Fig. 20 we examine the starvation probabilities
when the playback process begins at different states. We test
two start-up thresholds, qa ¼ f5; 10g, and two flow arrival
rates, � ¼ f0:07; 0:09g. One can observe that the starvation
probabilities do not differ much in high states (e.g., 8 and 9).
However, the starvation probabilities in the states with mean
throughput around 1 are distinguishable, in which state 6 is
an example. With � ¼ 0:09, a tagged flow sees the congested
network (more other flows) with a higher probability, and
also encounters a higher probability of starvation afterwards.

Fig. 19. Starvation probability versus start-up threshold with Rayleigh
fading (dashed line and crosses are for � ¼ 0:07; solid line and circles
are for � ¼ 0:09).

Fig. 20. Starvation probability at different states with Rayleigh fading.
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7 DISCUSSIONS AND POTENTIAL LIMITATIONS

In recent years, the QoE metrics have been well modeled
for a single flow that encounters variations in packet
arrival rate [8], [12], [13], [14]. These variations arise from
random packet loss in a wireless channel, congestion in a
bottleneck, or abrupt change of bandwidth, in which they
can be captured by an “independent” external stochastic
process. Different from the above works, this paper tar-
gets at a more practical and challenging scenario with
multiple streaming flows competing for finite capacity.
Streaming flows arrive to the bottleneck dynamically
where each flow is not on transmission perpetually, but
has a finite duration. Hence, a flow’s QoE is coupled with
that of concurrent flows. Existing approaches are not
capable to compute the QoE metrics with flow-level
dynamics. Our major contribution is to build a novel
framework to characterize the QoE metrics analytically in
this scenario. We further demonstrate that variations
caused by fast channel fading and video playback have
marginal impact on the QoE metrics in comparison to
flow-level dynamics. Despite of our contributions, this
work still has several potential limitations.

7.1 Solutions are Not Completely Explicit

The QoE metrics are expressed in the form of matrices
explicitly. However, we still need to compute the eigenval-
ues of two matrices, which can only be done numerically.
We justify this limitation from two angles. First, computing
eigenvalues of small matrices has negligible complexity.
Equipped with our models, network planners can obtain
streaming QoE immediately in any configuration without
running simulations or emulations for a long period. Sec-
ond, obtaining completely explicit QoE metrics is even
impossible for a single stream. The important work [12]
presents a nearly explicit solution with integral of error
function. Authors in [14] come up with a close-form lower
bound of starvation probability for a single stream. The
solution in [8] is explicit only for M/M/1 and M/D/1
queueing models. In our opinion, completely explicit QoE
metrics do not exist in the scenario that the competing video
streams arrive and leave dynamically.

7.2 Assumptions on Channel Fading

The assumption of i.i.d SNR has been widely adopted to
analyze the capacity of wireless channel and the perfor-
mance of channel-aware schedulers [32], [33], [34], [35].
Although in practice the SNRs of users do not follow identi-
cal Rayleigh distributions, we insist on this assumption in
this work. The reason lies in our main purpose which is to
develop a novel analytical framework to characterize
streaming QoE affected by flow-level dynamics at the
shared bottleneck. This framework can be naturally
extended to more realistic scenarios such as heterogeneous
channel gains and more general distributions of video dura-
tion. Let us take the scenario of heterogeneous channel gains
as an example. Users having the same SNR (or mean SNR)
fall in one class. The service rates of users in different classes
are different, which means that their departure rates are
also different. The number of streams sharing the bottleneck
can be modeled as a multi-dimensional Markov process. A

state contains the number of concurrent flows in each class
so that the total number of states is the product of the num-
ber of classes and the maximum number of allowed flows.
We can then construct the PDEs and the ODEs on top of
them, and compute the QoE metrics accordingly. The multi-
dimensional Markov process involves a more complicated
transition matrix between pair-wise states. However, it does
not increase the computational complexity significantly. In
today’s cellular networks, each cell is designed to be small
(e.g., Femtocell) to accommodate several users simulta-
neously. Meanwhile, only several physical transmission
rates are offered to users so that the number of classes is
small. Therefore, the eigenvalues of the transition matrices
can be calculated easily and hence the QoE metrics.

7.3 Assumptions on Video Length

When video duration is not exponentially distributed, our
models can still reveal how the starvation probability
decreases with the increase of start-up threshold. In this
work, we intentionally consider lognormal and Pareto video
length distributions that prevail in Youtube-like Internet
streaming systems. Our models based on exponential distri-
bution well predict starvation probability of lognormal and
Pareto distributions in some representative simulations.
This validates the robustness of our modeling framework.
Certainly, the accuracy of prediction relies on to what extent
a non-exponential distribution resembles the exponential
counterpart with identical mean. When video length distri-
bution is far away from the exponential one, an alternative
approach is to approximated by a phase-type distribution,
that is, the combination of several exponential distributions
with different expectations. This is equivalent to the sce-
nario of non-identically distributed SNRs. The flows having
the same mean duration fall in the same class. We can con-
struct the multi-dimensional Markov process observed by a
tagged flow and compute the QoE metrics in the same way.
Due to the limit space and the organization of this work, we
leave them for our future study.

8 CONCLUSION

In this work, we developed an analytical framework to
compute the QoE metrics of media streaming service in
wireless data networks. Our framework takes into account
the dynamics of playout buffer at three time scales, the
scheduling duration, the video playback variation, as well
as the flow arrivals or departures. We show that the pro-
posed models can accurately predict the distribution of
prefetching delay and the probability generating function
of buffer starvations. The analytical results demonstrate
that the flow dynamics have dominant influence on QoE
metrics compared to the variation of throughput caused by
fast channel fading and that of video playback rate caused
by VBR streaming.
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