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Abstract— The price-anticipating Kelly mechanism (PAKM) is
one of the most extensively used strategies to allocate divisible
resources for strategic users in communication networks and
computing systems. The users are deemed as selfish and also
benign, each of which maximizes his individual utility of the
allocated resources minus his payment to the network operator.
However, in many applications a user can use his payment to
reduce the utilities of his opponents, thus playing a misbehaving
role. It remains mysterious to what extent the misbehaving user
can damage or influence the performance of benign users and the
network operator. In this work, we formulate a non-cooperative
game consisting of a finite amount of benign users and one
misbehaving user. The maliciousness of this misbehaving user is
captured by his willingness to pay to trade for unit degradation
in the utilities of benign users. The network operator allocates
resources to all the users via the price-anticipating Kelly mecha-
nism. We present six important performance metrics with regard
to the total utility and the total net utility of benign users, and
the revenue of network operator under three different scenarios:
with and without the misbehaving user, and the maximum. We
quantify the robustness of PAKM against the misbehaving actions
by deriving the upper and lower bounds of these metrics. With
new approaches, all the theoretical bounds are applicable to
an arbitrary population of benign users. Our study reveals two
important insights: 1) the performance bounds are very sensitive
to the misbehaving user’s willingness to pay at certain ranges
and 2) the network operator acquires more revenues in the
presence of the misbehaving user which might disincentivize his
countermeasures against the misbehaving actions.

Index Terms— Price anticipating Kelly Mechanism, misbehav-
ior, Nash equilibrium, efficiency bound, price differentiation.
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I. INTRODUCTION

RESOURCE allocation is one of the fundamental issues
in computer networks and computing systems that have

received persistent studies from many aspects for decades.
Taking our Internet as an example, the bandwidth is shared by
heterogeneous population of users that vary in their types of
traffic and their valuations to perceived network performance.
A crucial question emerged, that is, how the resources should
be shared among heterogeneous users efficiently. A bunch of
early work proposed different economic approaches to charge
users according to their usage of network resources, thus
addressing the heterogeneity in users and managing congestion
in networks. Kelly in [1], [2] proposed a market mechanism,
namely “Kelly Mechanism”, in which each user submits a
“bid” to the network operator, then the network operator
determines the price of each link after collecting all the bids
and allocates the resources to each user in proportion to his
bid. Kelly mechanism consists of two scenarios: price-taking
users and price-anticipating users. In the former, a price-taking
user bids to the network operator with the observation of the
per-unit of bandwidth price. In the latter, a price-anticipating
user is strategic in the sense that he takes into consideration
how the per-unit of bandwidth price is influenced by his bid.
Given the bidding vector of all the strategic users, he knows
that the resources allocated to him are proportional to his bid,
but inversely proportional to the sum of all bids. The higher
bid a user pays, the more resources will be allocated to him
and less to the others. Thus, a game is introduced because the
bid of each user affects the payoffs of other users, and it is
suitable to capture the competition for limited and divisible
bandwidth resources [3].

When users are price-anticipating, the system utility at
Nash Equilibrium (NE) will deviate from that at social opti-
mum. Johari and Tsitsiklis in [4] have proved that the price-
anticipating Kelly mechanism (PAKM) yields at most a 25%
efficiency loss at the equilibrium. This optimistic result is
deemed as the cornerstone of PAKM, whichhas rarely been re-
examined in the following decade. Owing to its simplicity and
guaranteed performance, the price-anticipating Kelly mecha-
nism has gained popularity beyond the bandwidth allocation
of fixed-line [3], [5], [6] and mobile networks [7], [8], which
we name a few new applications as below.

• Server Cluster/5G Network Slicing: Feldman et al.
adopted the price-anticipating Kelly mechanism to allo-
cate computing resource to selfish users with a fixed
budget in distributed clusters [9]. Caballero et al. applied
this mechanism to perform network slicing in 5G mobile
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networks, i.e. dividing the mobile network infrastructure
into logical networks [8], [10].

• Crowdsourcing Incentivization: Yang et al. utilized
PAKM to incentivize mobile users to contribute their
sensing time in crowsensing applications [11]. Ghosh and
McAfee analyzed the economics of incentivizing high-
quality user generated content using PAKM [12]–[14].

• Visibility/Advertising Competition Online: Altman et al.
modeled the competition for users’ attention in the time-
line of online social networks (OSNs) [15]–[19] in which
the total attention is divided by multiple owners according
to PAKM. Bimpikis and Ozdaglar [20] studied the opti-
mal targeted advertising in OSNs where the competition
of two brands can take the form of PAKM.

• Blockchain Mining: The probability that a bitcoin miner
first discovers a block is determined by PAKM where the
bid of the miner is his Hashrate to solve cryptographic
puzzles [21].

Though fruitful, previous work laid the foundation on the
selfishness (or benignancy interchangeably) assumption that
each user aims to maximize his payoff, and this payoff reflects
his valuation or satisfaction to the share of resource. Beyond
selfishness, a user can be misbehaving in which his goal is
to reduce the utilities of all other selfish users. There have
been a number of real-world counterparts, taking different
forms in different applications. For instance, an attacker can
hijack zombie computers so as to generate a high volume of
misbehaving traffic to perform denial-of-service (DoS) attacks.
Authors in [22] presented PAKM to allocate bandwidth among
the benign users and the attacker. For visibility competition
in OSNs, the fraction of viewers’ attention is determined by
PAKM [15] where the misbehaving advertiser can decrease
the visibility of the benign advertisers by posting excessive
messages to social media, thus flushing down the relatively
old messages of benign ones. They can even pay a fee to
the network operator against benign advertisers so that the
messages of misbehaving users can be displayed in the time-
lines of potential viewers for a certain period. Furthermore,
the price-anticipating Kelly mechanism has been applied to
social security models [23]–[25] that can also sharpen the
understanding of adversary competition over networks. There-
fore, it is necessary to figure out the damage caused by the
misbehaving user rigorously. In the light of the heterogeneity
of benign and misbehaving users, case-by-case studies neither
capture the efficiency loss in the general settings, nor provide
insights on the countermeasures against the misbehaviors.

In this paper, we model the competition of users as a non-
cooperative game where the players consist of a finite number
of benign users and one misbehaving user. The strategy of
a player is his bid submitted to the network operator. The
utility of a benign user is his satisfaction on the allocated
resources, and the net utility is defined as his utility minus the
bid paid to the network operator. While the satisfaction of the
misbehaving user is not determined by the resourced allocated
by him, but the losses that the benign users suffer from the
misbehaviors. Similar to [22], the hostility of the misbehaving
user is captured by his willingness to pay or willingness factor.
The willingness factor refers to a scalar that the misbehaving
user wishes to use a unit cost or payment to trade for the loss

of aggregate utility of the benign users. Hence, his objective
is to maximize the utility loss of the benign users minus his
payment to the network operator.

Our work distinguishes from the literature in two aspects:
new performance metrics and new analytical approaches.
When the misbehaving user performs actions, we are faced
with the following fundamental question: To what extent the
misbehaving user can damage or influence the performance
of the benign users and the network operator at a Nash
Equilibrium? In [22], authors present two metrics, U and L.
Here, U denotes the total utility of the benign users, reflecting
the extent that all the benign users enjoy their allocated
resources. L is the sum of U and the misbehaving user’s bid
submitted to the network operator. In other words, the benign
agents and the network operator are treated as “good” players
so that L is their total profit. However, using L as a metric
conceals the damage on the net utility of benign users, and
the impact on the revenue of the network operator that they
should be scrutinized separately. Both the benign users and
the network operator are “good” but playing different roles
and possessing different objectives. On one hand, each benign
user eventually cares about his net utility of the allocated flow
rate or the online visibility etc. On the other hand, the revenue
harvested by the network operator may influence his coun-
termeasures against the misbehaving user. Hence, we raise
two new metrics, the total net utility of benign users V and
the total revenue of the network operator W . To quantify
the efficiency loss in the presence of the misbehaving user,
we define three representative scenarios: i) NE of the game
excluding the misbehaving user (nom), ii) NE of the game
consisting of the misbehaving user (mal), iii) the maximum
measures excluding the misbehaving user (max).

We analyze the above performance metrics in different
scenarios via their upper and lower bounds. The ratios Umal

Umax
,

V mal

V max
and Wmal

Wmax
compare the metrics in the presence of the

misbehaving user with the maximum metrics excluding him.
The ratios Umal

Unom
, V mal

V nom
and Wmal

Wnom
demonstrate the changes

of metrics between the two NEs excluding and including
the misbehaving user. Compared with previous studies [4]
and [22], our work considers two important extra metrics
(V and W), derives both the lower and the (approximate)
upper bounds of these ratios instead of the lower bounds
only. The theoretical results are obtained for any number of
benign users other than the regime of the infinite number of
benign users. The approaches of analyzing the bounds are also
different from those in [4] and [22], and they are far beyond
simple calculations because the NEs at different games involve
different sets of players. The lower bounds manifest how the
utility and the net utility of benign users, and the revenue of
network operator are influenced by the maliciousness of the
misbehaving user in the worst case. The upper bounds are used
to gauge how good the performance metrics are at the NE by
showing their gaps to the best achievable values. Our study
reveals three interesting phenomena: i) the willingness factor
of the misbehaving user in certain ranges can remarkably
alter the upper and the lower bounds of the benign users’
total utility and total net utility; ii) the network operator
obtains a better revenue from the misbehaving actions that
may undermine his will to take them down; iii) the lower
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bounds are improved when the network operator charges the
misbehaving user a higher price, and the lower bound of total
utility over maximum may be worse off when a benign user
is mischarged a higher price.

We summarize our main results and contributions as
follows.

• We present new metrics to quantify the robustness of
price-anticipating Kelly mechanism in the presence of a
misbehaving user.

• For general utility functions of benign users, we quantify
the lower bounds of Umal

Umax
, Umal

Unom
, V mal

V max
and V mal

V nom
that

are jointly determined by the number of benign users
(N ) and the willingness factor (θ). Their upper bounds
are also investigated when the utility functions are linear
to the allocated resources.

• We compute the upper and lower bounds of Wmal

Wmax
and

Wmal

Wnom
for linear utility functions. As θ grows, the both

bounds of Wmal

Wmax
increase. The ratio Wmal

Wnom
is no worse

than 1 and its upper bound is ∞.
• When price differentiation is taken as a countermeasure,

charging a higher price on the per unit of resource of
the misbehaving (resp. benign) user may improve (resp.
lower down) the performance metrics as well as lower
bounds, but the impact on the revenue of network operator
is uncertain.

The remainder of this paper is organized as follows.
Section II presents the mathematical model of the price-
anticipating Kelly mechanism with a misbehaving user.
Section III derives the upper and the lower bounds of the
benign users in PAKM. We validate those bounds numerically
in Section IV. Section V analyzes the impact of different
price differentiation schemes on the performance metrics.
Section VI describes related work and Section VII concludes
this work.

II. MODEL AND MEASURES

In this section, we construct the basic game model of
price-anticipating Kelly mechanism with selfish as well as
misbehaving users, and present a set of new performance
metrics to quantify the impact of misbehaving users on the
user utility.

A. Basic Model

We suppose that there exist N+1 users denoted by A =
{A0,A1, · · ·,AN}. These users are divided into two groups
where those in the set {A1, · · · ,AN} are benign and A0 is
misbehaving. Every user, either benign or misbehaving, pays
a certain bid to acquire a fraction of network resources. The
purpose of the benign user is to achieve an optimal tradeoff
between his utility on his obtained resources and the payment
to the network operator. On the contrary, the misbehaving user
aims to reduce the utility of all the benign users, considering
his payment. Throughout this work, we assume that the total
amount of resources is normalized as 1. Note that all the results
hold for any finite amount of resources.

1) Utility Model: We hereby describe the utility functions
of all the users. Define x = {x0, x1, · · · , xN} as the vector
of bids paid to the network operator and define z :=

∑N
i=0 xi

as the total amount of bids. The fraction of Ai’s bid over the
total is denoted as

di =
xi

z
=

xi
∑N

j=0 xj

(1)

that is also the fraction of resources allocated to Ai.1 Let
d={d0, d1, · · ·, dN} be the vector of all the fractions. Denote
by UAi(di) the utility of Ai of utilizing the fraction of resource
di. The net utility of a benign user Ai, VAi(x), is defined
as the difference between the utility and the bid paid to the
network operator,

VAi(x) = UAi(di(x)) − xi, ∀1 ≤ i ≤ N. (2)

The objective of the misbehaving user is to reduce the
utilities of all other benign users. Hence, the utility and the
net utility of A0 are expressed as

UA0(x) = −θ
∑N

i=1
UAi(di(x)) (3)

VA0 (x) = −θ
∑N

i=1
UAi(di(x)) − x0, (4)

where θ > 0 is the willingness to pay (or willingness factor) of
the misbehaving user. This means that the misbehaving user
would like to use θ dollars to trade for a unit reduction of
benign users’ utility [22]. Note that θ captures A0’s resolution
to reduce the total utilities of benign users. At an extreme point
θ = 0, A0 does not participate in the timeline competition in
any situation, while at the other extreme point θ → ∞, A0 tries
all means to perform DDoS attack against benign users, or to
create messages with an infinite intensity to flush away those
of benign users in targeted online advertising. We adopt the
same utility model as that in [22], but the major differences
lie in the analysis of novel performance metrics that shed light
on the impact of the misbehaving user on the efficiency loss
of the system.

Similar to the prior work on network resource allocation [4]
and [22], we employ the following assumption on the utility
of benign users. Note that the utility of a benign user is a
function of its allocation, and also a function of the scalar of
the bids indirectly. We hereby clarify the difference and the
relevancy of hypotheses made on each of them.

Assumption P: The utility of the ith benign user,
UAi(di(x)) : R

N
+ �→ R+ satisfies:

• (P1: Monotonicity and Concavity) non-negative, strictly
increasing, concave and continuously differentiable in the
allocation di for all i ∈ [1, N ];

• (P2: Monotonicity and Convexity) non-negative, strictly
decreasing and strictly convex in x0.

In the first part P1, a benign user acquires a better utility if
his allocation is larger. However, further increasing his share
of resources does not yield an increasing marginal utility.
Such a utility function can be interpreted as the satisfaction

1When the resource is not divisible, e.g. a time slot or a channel in wireless
networks, or an advertising location in webpages, di refers to the probability
of the ith user to acquire this resource.
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of the benign user to the bandwidth in communication net-
works, or the visibility in online media. As a direct deduction
of P1, UAi(di(x)) is a strictly increasing and strictly concave
with regard to xi (even if UAi(di(x)) is a linear function
of di(x)). The benign user Ai can obtain a higher utility if
he bids a higher xi, yet further increasing his bid yields a
shrinking marginal utility. Meanwhile, P1 coincides with the
assumption of Theorem 2 in [4] and the assumption of [3]
that guarantee the existence and uniqueness of NE without
considering the misbehaving user.

In the second part P2, the utility of each benign user is a
strictly decreasing and strictly convex function of x0. Hence,
the utility of the misbehaving user UA0(x) is strictly increasing
and strictly concave with regard to x0. When the misbehaving
user pays a higher bid x0, the utility of each benign user
decreases, and further increasing x0 causes the moderative
reduction of the utilities of all the benign users.

We further define a special type of utility function satisfying
assumption P:

Definition 1 (Linear Utility Function): The utility of benign
user Ai is a linear function if it is in the form

UAi(di) = vidi, ∀i = 1, · · · , N, (5)

where vi is regarded as Ai’s valuation or satisfaction to the
allocated resources. The valuations are sorted in a decreasing
order, i.e. v1≥v2≥ · · · ≥vN with v1 normalized as 1.

Other widely used utility functions [2], [36] that satisfy
assumption P include the log-utility function and alpha-fair
utility function. They take the following forms respectively:

UAi(di) = vi log(1 + di) and UAi(di)

= vi
d1−α

i

1 − α
, ∀i ∈ [1, N ],

where α is a constant in the range (0, 1).
2) Game Model: We formulate the competition of all the

benign and misbehaving users as a noncooperative game
denoted by G that comprises three key elements:

- Players: a set of users {A0,A1, · · · ,AN};
- Strategies: each player’s strategy is the bid paid to the

network operator, i.e. xi for all i = 0, 1, · · · , N ;
- Payoffs: the payoff of a player is his net utility, i.e.

(VA0 , VA1 , · · · , VAN ).
For the game G, we define its Nash Equilibrium (NE) as

the following.
Definition 2 (Nash Equilibrium): Let x =

(x0, x1, · · · , xN ) be the vector of bids paid to the network
operator, and x−i=x\{xi}. A strategy profile x∗ is a Nash
equilibrium if VAi(x∗

i , x
∗
−i)≥VAi (xi, x

∗
−i) for any xi 	= x∗

i

and any Ai ∈ A.

B. Performance Measures

The competitions take place among the benign users, and
between the benign users and the misbehaving user. It is
expected that the misbehaving user will reduce the utility and
the net utility of the benign users, and affect the revenue of
the network operator. We define three measures to quantify
the outcomes of competition: total utility (U) and total net

utility (V ) of benign users as well as total network operator’s
revenue (W). Formally, there have

U =
∑N

i=1
UAi , V = U −

∑N

i=1
xi, W =

∑N

i=0
xi.

Here, U reflects the total satisfaction of benign users with
respect to their allocated resources. In addition, U is equivalent
to the sum of all the net utilities of benign users and their bids
acquired by the network operator. Johari and Tsitsiklis in [4]
proved that the competition among the benign users leads to
at most 25% loss of U compared with the social optimum.
Vulimiri and Agha et al. generalized the analysis of U by
introducing a misbehaving user [22]. However, taking U as
the only performance measure may overlook the different roles
that the benign users and the network operator play in many
applications. For instance, in the DDoS attack, each benign
user cares about his loss of net utility caused by the attacker,
and the network operator is interested in the total price paid
by all the users using the bandwidth. In the targeted online
advertising, it is also important to examine the efficiency loss
of net utilities obtained by the benign users, and the total
revenue received by the OSN. Therefore, we propose two new
metrics, V and W , to analyze the net utility of benign users
and the revenue of the network operator in the presence of a
misbehaving user.

To capture the efficiency of the misbehaving user to neu-
tralize the gains of the benign users and his impact on the
network operator’s revenue, we compare U (resp. V and W)
in three scenarios: MAL, NOM and MAX.

• MAL refers to the game consisting of all the players in
A;

• NOM refers to the game excluding the misbehaving
user A0;

• MAX refers to the maximum achievable metrics when
excluding the misbehaving user A0.

Note that in each of MAL and NOM, there exists a
unique Nash equilibrium that will be proved in section III-
A. Before diving into the mathematical analysis, we introduce
the performance metrics first. In general, the utility functions
of the benign users are rather diverse; one has to investigate
enormous cases so to understand the impact of misbehaving
behavior on the above metrics. Instead of pursuing case-by-
case studies, we resort to the worst and the best performance
for versatile utility functions. Therefore, our primary goals are
to quantify the following bounds:

• B1: Umal

Umax
, the gap between the total utility (or satisfac-

tion) at the NE of MAL and the maximum total utility
(or satisfaction) of benign users.

• B2: Umal

Unom
, the damage to the total utility (or satisfac-

tion) of benign users at two NEs of MAL and NOM
respectively.

• B3: V mal

V max
, the dissipation of total net utility of benign

users at the NE of MAL in comparison to the maximum
total net utility of benign users.

• B4: V mal

V nom
, the damage to the total net utility of benign

users at two NEs of MAL and NOM respectively.
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• B5: Wmal

Wmax
, the ratio between the network operator’s

revenue at the NE of MAL and the maximum revenue
of the network operator in MAX.

• B6: Wmal

Wnom
, the ratio between the network operator’s

revenue at the NE of MAL and that at the NE of NOM.
The bounds B1, B3 and B5 mainly capture the absolute

performance at the NE with the possible emergence of the
misbehaving user (compared with the maximum performance
free of the misbehaving user). While the bounds B2, B4 and
B6 look into the relative changes brought by the possible
emergence of the misbehaving user.

In [22], the total utility of benign users is the main concern.
The lower bound of Umal

Umax
has been analyzed in the extreme

with unlimited number of players. In comparison, the major
differences between [22] and our work are listed below:

i): We consider a finite number of benign users where the
bounds of B1 in [4] and [22] are special cases of ours at the
regime of infinite number of users;

ii): The bounds of B2 ∼ B6 have not been studied previ-
ously;

iii): We further obtain the upper bounds to exhibit the best
performance measures for benchmark linear utility functions;

iv): We study the bounds of the network operator’s revenue;
v): We analyze the impact of price differentiation as a

countermeasure on the utilities of different economic entities
and their bounds.

III. EFFICIENCY LOSS OF BENIGN USERS

In this section, we obtain the bounds of performance
measures for the price-anticipating Kelly mechanism with a
misbehaving user. Our analyses provide deep understandings
on how (in)efficient the misbehaving user can reduce the
benefits of the benign users.

A. Nash Equilibrium

We first echo that the game G induces a unique Nash equi-
librium. The uniqueness has been proved in Kelly’s mechanism
(price anticipating bandwidth sharing game) with only benign
users [4], and in the security game [22]. Here, a couple of
known results are summarized.

Theorem 1 (Uniqueness of Nash Equilibrium) [22]: The
game G has a unique Nash Equilibrium x∗≥0 under assump-
tion P, where at least two components of x∗ are positive.

Remark 1: With assumption P, the utilities of all the players
including the benign and the misbehaving users are concave
functions of their individual bids, thus constituting a concave
game [26].

The above theorem also implies that a subset of users may
not pay a fee to the network operator. We claim that Ai does
not participate in the competition if his payment has x∗

i =
0. In the standard Kelly’s mechanism, at least two players
participate at the NE. This is also true in the presence of the
misbehaving user with the specialty that these two players
can be one benign user and the misbehaving user. Let us first
examine the participation of players at the NE. To find the
NE of this continuous game, we take the first-order partial
derivative of UAi(x) over xi, ∂UAi(x)/∂xi, for all i ∈ [0, N ].

The bid of Ai at the NE is the best response of the bids
of his opponents. Therefore, ∂UAi(x)/∂xi is 0 if the best
response x∗

i > 0 and becomes non-positive if x∗
i is 0 (i.e. at the

boundary). The conditions of the NE (denoted as NE_CONDs)
are summarized below (recalling z =

∑N
i=0 xi):

U �
Ai

(d∗i )
z∗−i

(z∗)2
− 1

{
= 0 if x∗

i > 0
≤ 0 if x∗

i = 0
∀i ≥ 1, (6)

θ
∑N

i=1
U �
Ai

(d∗i )
x∗

i

(z∗)2
− 1

{
= 0 if x∗

0 > 0
≤ 0 if x∗

0 = 0
(7)

where U �
Ai

(di) is the derivative of UAi(di) over di.
NE_CONDs in Eqs.(6) and (7) do not yield close-form
expression of the NE, thus not allowing further understanding
on its property in general.

We compute the NE when the utilities of the benign users
are linear functions of the allocated resources. Our purpose is
to scrutinize the participation of players on top of an explicit-
form NE. The linear utility function is crucial to the analysis
of theoretic bounds later on.

Theorem 2 (Nash Equilibrium for Linear Utility): The NE
with linear utility functions {UAi(di)}N

i=1 satisfies:

• if n out of N benign users participate and there exists

θ <
n − 1

∑n
j=1 vj

∑n
j=1 1/vj−n(n−1)

, (8)

the NE strategy is computed by
⎧
⎪⎨

⎪⎩

x∗
i =

(
∑n

j=1 1/vj

n−1
− 1

vi

)( n−1
∑n

j=1 1/vj

)2

x∗
0 = 0;

(9)

• if otherwise, the NE strategy is computed by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗
i =

( n + 1/θ
∑n

j=1 vj
− 1

vi

)(
∑n

j=1 vj

n+1/θ

)2

x∗
0 =

∑n
j=1 vj

n + 1/θ

(
∑n

j=1 vj

∑n
j=1 1/vj

n + 1/θ
+1−n

)
;

(10)

• the number of benign users with positive bids, n∗,
is searched from N to 1 until x∗

i ≥ 0 for 1 ≤ i ≤ n;
• the utility and the net utility of benign users are decreas-

ing functions of θ upon x∗
0 > 0.

Proof: Please refer to the appendix in the Supplementary
Material.

A simple search method is shown in Algorithm 1. The first
step is to compute x∗ by assuming the participation of n = N
benign users at the NE. If x∗

i is positive for all Ai ∈ A,
the NE is obtained. Otherwise, if any x∗

i is negative, this means
that some of the benign users or the misbehaving user do not
participate in the competition. By removing the concurrent
benign user with the smallest valuation or the misbehaving
user, we proceed to search until n=1.

We further present general properties w.r.t. the participation
of benign users when the utilities are linear to their fractions
of acquired resources.

Theorem 3 (Participation of Players for Linear Utility):
The NE x∗ has the following properties:

• if θ > N−1
N , then there always has x∗

0 > 0;
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Algorithm 1 : Searching the NE for Linear Utility Functions
Input: v, θ, N ; Output: x�

1: sort vi in the descending order
2: for n = N to 1
3: Compute x∗

i using Eq.(10)
4: if x∗

i ≥ 0 for all i = 0, · · · , n
5: exit
6: else
7: Compute x∗

i using Eq.(9)
8: Compute the NE conditions in (6) and (7)
9: if θ

∑N
i=1 U �

Ai
(d∗i )

x∗
i

(z∗)2 ≤ 1 and x∗
n ≥ 0

10: exit
11: end
12: end
13: end

• if vi > vj and x∗
j > 0, then x∗

i >x∗
j>0 ∀1 ≤ i, j ≤ N ;

• if vi = vj for all i, j, then x∗
i > 0 for all 1 ≤ i ≤ N .

proof: Please refer to the appendix in the Supplementary
Material.

Theorem 3 shows the sufficient conditions that the benign
users or the misbehaving user participate in the competition.
When θ is larger than a fixed threshold, A0 will always play
against the benign users, regardless of the valuations of benign
users (with the normalization of v1). The second bullet shows
that the benign users with higher valuations are more likely
to participate at the NE.

B. Lower and Upper Bounds for Linear Utility Functions

The NE of a price-anticipating Kelly mechanism is easy to
solve, and it is determined by the vector of valuations and
the willingness factor in the linear case. The valuations are
chosen arbitrarily such that an important question is concealed:
how harmful is the misbehaving user’s strategy on the utilities
of benign users? Trying as more examples of v as possible
numerically may give rise to the bounds of performance met-
rics for certain parameters or certain utility function, however,
it fails to deliver the fundamental qualitative properties. To this
goal, we compare the NEs in three scenarios: MAL, NOM
and MAX. The metrics that are studied consist of the utility
of benign users, the net utility of benign users and the revenue
of network operator. The following theorem states the lower
bounds of Kelly mechanism with linear utility functions.

Theorem 4 (Lower Bounds): For linear utility functions of
benign users, the lower bounds of B1 ∼ B6 are as follows.

• B1: (NE Utility over Maximum)

Umal

Umax

≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+θ)−1, if θ>
(
(

√
N

N−1
+1)2−1

)−1

1−(N−1)
(
√

N−√
N−1)2, otherwise

(11)

where the bound is tight with vi < θ
1+θ for i ≥

2 in the upper formula, and is tight with vi =

√
N(N−1)−(N−1) for i ≥ 2 in the lower formula. As

N → ∞, the asymptotic lower bound is

Umal

Umax
≥ min{3

4
,

1
1+θ

} (12)

where 3/4 is reached at vi = 1/2 for i ≥ 2.2

• B2: (NE Utility With/Without Misbehaving User)

Umal

Unom
≥ 1

1 + θ
(13)

where the lower bound is tight for any vi ≤ θ
1+θ with

i ≥ 2.
• B3: (NE Net Utility over Maximum) Define a variable

ṽ(n) that is the unique, positive and real solution to the
equation

2(n−1)v3 + (3 − 2n + θ−2)v2 − 1 = 0 (14)

for any n ∈ {2, · · · , N}. The lower bound of the total
net utility is given by (15).

V mal

V max
≥ min{1 − (N−1)((N+1) −√

N2 − 1)
1 + 1

2

(√
N2−1 + (N−1)

) ,

(1 − nθ)(1 + (n − 1)ṽ(n))
1 + nθ

+ (1+
n − 1
ṽ(n)

)(
θ(1 + (n − 1)ṽ(n))

1 + nθ
)2},

n = 1, · · ·, N. (15)

When N and θ are large enough, the lower bound is
approximated by

V mal

V max
≥ min{ 1

N
,

N

(1 + Nθ)2
}. (16)

• B4: (NE Net Utility With/Without Misbehaving User)
V mal

V nom
≥ 1

(1 + θ)2
(17)

where the equality holds for vi ≤ θ
1+θ with i ≥ 2.

• B5: (Operator’s Revenue over Maximum)

Wmal

Wmax
≥ θN

(1 + θ)(N − 1)
(18)

where Wmax is the maximum revenue at any NE in the
absence of A0, and the equality holds for vi ≤ θ

1+θ with
i ≥ 2.

• B6: (Operator’s Revenue With/Without Misbehaving
User)

Wmal

Wnom
≥ max{1,

θN2

(1 + θN)(N − 1)
} (19)

where the lower bound is achieved either without the
participation of misbehaving user or with vi = 1 for all
benign users.

Proof: Please refer to the appendix in the Supplementary
Material.

We summarize our main observations as below.

2The asymptotic lower bound of B1 for N → ∞ has been proved in [22]
using a different approach.
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1) Trend of Utility Dissipation: The lower bounds of B1 ∼
B4 decrease as the number of benign users or the willingness
factor of the misbehaving user increases. This implies that a
more furious competition makes the lower bounds worse off.

2) Role of Misbehaving User in Utility Dissipation: The
utility and the net utility of benign users dissipate for two
reasons: the competition among benign users, and that between
the misbehaving user and benign users. When θ is small,
the lower bounds B1 and B3 are governed by the number
of benign users. In a highly competitive scenario (i.e. a large
N ), the lower bound of utility reduces to 3

4 of the optimality
and that of net utility is inversely proportional to N . When θ is
above a certain threshold (as a function of N ), the lower bound
B1 is solely determined by θ and this bound is tight in the
presence of only A0 and A1 at the NE. The lower bound of B3
contains both N and θ because the worst net utility happens
when as many as possible players participate at the NE and the
willingness factor is large meanwhile. For the ratios B2 and
B4, the worst cases take place when A0 and A1 participate
at the NE while other benign users are excluded. From the
perspective of misbehaving user, the malicious behavior taken
by him is effective to neutralize the utilities of benign users
when the number of benign users is small or the valuations of
most of them are small enough. The incentive of performing
attacks in a highly competitive scenario is thus weak.

3) “Cliff Effect” of Utility Dissipation: A crucial question
is how the utility of benign users is influenced by the bid of
the misbehaving user and the network parameters. Instead of
examining each NE case by case, we analyze the sensitivity of
bounds to N and θ. The bounds of B1 and B3 are sensitive
to the increase of N when θ is small. Especially, a gently
increase of N results in remarkable reduction of the lower
bounds. When θ is greater than a certain threshold in each case,
the lower bounds are sensitive to the change of θ, especially
in the vicinity of the threshold value. The lower bounds of B2
and B4 are decreasing and strictly convex with regard to θ.
Hence, even a very small θ is effective in reducing the utility
and the net utility of bening users in the worst case.

4) More Revenues to the Network Operator: The lower
bound of B6 manifests that the network operator can always
harvest more revenues when the misbehaving user bids to
acquire a positive amount of resources. This can partly inter-
pret why many network operators simply ignore the misbe-
having actions. The lower bound B6 is a decreasing function
of N and an increasing function of θ. Therefore, allowing the
misbehaving user may generate a much better revenue to the
network operator when the population of benign users N is
small or the willingness factor θ is large. Note that Wmax in
B5 is the maximum revenue obtained by the network operator
at any NEs when the misbehaving user is excluded. As θ is
small, the lower bound almost increases linearly to θ, which
might be sufficiently “attractive” to the network operator.

Remark 2: (Challenges of Proofs) Intuitively, all the theo-
retic bounds can be proved by simply dividing two metrics
for each performance metric. However, the number of benign
users participating at the NE with the misbehaving user might
be different from that at the new NE without the misbehaving
user. Thus, a direct division of two metrics at different NEs

does not work. The participation of the misbehaving user
at the NE needs to be scrutinized and analyzed separately,
which greatly complicates the search of performance limits.
Given the willingness factor and the same set of valuations
in the linear utility function scenario, we may obtain nnom

and nmal benign users participating in the different NEs.
Two cases, nnom = nmal and nnom 	= nmal, are considered
separately; the conditions of the valuations reaching each case
are investigated in the analyses.

The upper bounds of the measures are also crucial to
quantify the efficiency of price-anticipating Kelly mechanism.
Firstly, the gap between an upper bound and a lower bound
manifests the maximum efficiency loss caused by the compe-
tition among benign users and caused by the presence of the
misbehaving user. If the willingness factor of the misbehaving
user is situated in a range causing salient utility gaps, his
malicious actions are deemed fairly effective. He is even
inclined to setting the willingness factor in this region if it
is adjustable. For a given distribution of valuations, knowing
the upper bounds will be helpful to gauge to what extent
the utility and the net utility of benign users are sacrificed,
and the revenue of the network operator is influenced due
to the competition among the benign and misbehaving users.
Secondly, an upper bound of the revenue of network operator
reflects the maximum achievable gain if he “closes his eyes”
on misbehaving actions. Note that linear utility is a benchmark
utility model in contest theory, and corresponds to the metrics
such as users’ satisfaction of using the allocated bandwidth
in communication networks, or the users’ valuation toward
the received attention in online visibility competition. The
following theorem states the upper bounds of performance
measures with linear utility functions.

Theorem 5 (Upper Bounds): For linear utility functions of
benign users, the upper bounds of B1, B2, B3, B5 and B6 are
as follows.

• B1: (NE Utility over Maximum)

Umal

Umax
≤

⎧
⎪⎨

⎪⎩

1 if θ ≤ N − 1
N

N

θN+1
otherwise

(20)

where the upper bound is tight for vi = 1 (i ≥ 1).
• B2: (Approximate Upper Bound of NE Utility

With/Without Misbehaving User) Given linear utility
functions of the benign users, the upper bound of Umal

Unom

is approximated by

Umal

Unom

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if θ ≤ N−1
N

max{ N

1+Nθ
,

(1 + θ)−1

(1 − (N − 1)(
√

N −√
N − 1)2)

} otherwise

(21)

where it is tight when vi equals to 1 for all i.
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• B3: (NE Net Utility Over Maximum)

V mal

V max
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(1 + θ)2

if θ ≤ √
2−1

1
2

if
√

2−1 < θ ≤ 1
2

2
(1 + 2θ)2

, if
1
2

< θ ≤
√

2
2

1
(1 + θ)2

, if θ >

√
2

2
.

(22)

• B5: (Operator’s Revenue over Optimality)

Wmal

Wmax
≤ max{1,

θN2

(1 + θN)(N − 1)
} (23)

where the upper bound is tight for vi = 1 (i ≥ 1).
• B6: (Operator’s Revenue With/Without Misbehaving

User)

Wmal

Wnom
∝ ∞ (24)

where the unbounded ratio takes place asymptotically as
v2 approaches 0.

Proof: Please refer to the appendix in the Supplementary
Material.

Our major observations on the upper bounds are summa-
rized below.

5) Trend of Utility Dissipation and CLIFF EFFECT: The
upper bounds of B1 and B2 reach 1 when the willingness
factor is small. As it further increases beyond a certain
threshold, even a small increment can yield a remarkable
reduction on the upper bounds. When N is sufficiently large,
the asymptotic upper bound of B1 is inversely proportional
to the willingness factor θ, and that of B2 is approximated
as max{ 1

θ , 4
3(1+θ)}. Similarly, the upper bound of B3 is

very sensitive to the willingness factor. The piece-wise curves
indicate the participation of users in four scenarios: {A0, A1},
{A1, A2}, {A0,A1,A2}, and {A0,A1} when the upper bound
of B3 is obtained.

6) Surprising Revenue Gain to the Network Operator:
The misbehaving user is inclined to bring surprisingly high
revenue gains. The ratio B5 reflects the maximum achievable
revenue at any NE. One can observe that the presence of the
misbehaving user is able to generate a revenue higher than the
maximum revenue without him. The ratio B6 compares the
revenues with and without the misbehaving user at the NEs.
The presence of the misbehaving user brings an unbounded
gain of the revenue at the extreme situation that all the benign
users except the first one own very low valuations. This
implies that the misbehaving user is especially beneficial to the
network operator when the competition among benign users
is gentle.

C. General Utility Functions and Multiple Misbehaving
Users

The linear utility function is of the simplest form. An impor-
tant question is whether the theoretic bounds derived above
are applicable beyond linear utility functions. Following the
approach in [4], we show that the lower bounds of linear

utility serve as those of more general utilities satisfying
Assumption P.

Theorem 6 (Condition for Lower Bounds): For arbitrary
utility functions of the benign users satisfying Assumption P,
the performance metrics, V mal

V max
, Umal

Unom
and V mal

V nom
, are lower

bounded by the cases with linear utility functions.
Proof: Please refer to the appendix in the Supplementary

Material.
A natural extension of our study is to consider multiple

misbehaving users. Denote by K = {1, · · · , K} the set of
misbehaving users. Let θk be the willingness to pay of the kth

misbehaving user, and let x0k be his bid paid to the network
operator. The NE conditions for the misbehaving users are
given by

θk

∑N

i=1
U �
Ai

(d∗i )
x∗

i

(z∗)2
− 1

{
= 0 if x∗

0k > 0
≤ 0 if x∗

0k = 0,
∀k

(25)

according to the principle of KKT conditions where z∗ =∑K
j=1 x∗

0j +
∑N

j=1 x∗
j . Consider two misbehaving users k1

and k2 with θk1 > θk2 . We suppose that the equalities hold
for both k1 and k2 in Eq.(25) when they pay positive bids.
Subtracting one from the other on both sides, we obtain
(θk1 − θk2)

( ∑N
i=1 U �

Ai
(d∗i )

x∗
i

(z∗)2

)
= 0. Given θk1 > θk2 and

(
∑N

i=1 U �
Ai

(d∗i )
x∗

i

(z∗)2

)
> 0, the above equality does not hold,

which contradicts the assumption. Hence, only the misbehav-
ing user with the larger willingness factor may participate at
the NE. For a set of misbehaving users with heterogeneous
willingness factors, the one with the largest willingness factor
can pay a positive bid, while the others do not participate in
the competition.

When multiple misbehaving users possess the identical
willingness factor (or when the misbehaving user splits himself
into multiple users), the uniqueness of the NE cannot be
guaranteed. The NE conditions for the misbehaving users are
given by

θ
∑N

i=1
U �
Ai

(d∗i )
x∗

i

(z∗)2
− 1

{
= 0 if x∗

0k > 0
≤ 0 if x∗

0k = 0,
(26)

for every misbehaving user. The KKT conditions have a unique
solution to z∗, yet the combinations of {x0k}K

k=1 resulting in
the unique z∗ are infinite. Therefore, the existence of multiple
misbehaving users affects the Kelly mechanism in the same
way as a single misbehaving user.

D. Impact of Incomplete Information

Nash equilibrium is obtained on the basis of complete
information, i.e. each player knows the utility functions and the
strategy profiles of all the players. Because our purpose is to
uncover the efficiency loss at the NE, we assume the availabil-
ity of complete information. In practice, a benign user is only
aware of his own utility function and is unwilling to share this
information to all the opponents. In this situation, the game is
played many rounds so that the complete information can be
learned implicitly by each user. Here, one round corresponds
to a time slot (e.g. one second) of sampling flow throughput
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in DDoS attack, or a time slot of visibility competition (e.g.
one day) in online media. Both the flow transmission and
the online promotion take a number of rounds so that the
equilibrium could be reached. Each benign user Ai knows his
utility function, his bid xi and his allocated resource di = xi

z
at time t. Given this knowledge, he is trying to maximize his
net utility in the next round. The best response of Ai is to
choose xi(t + 1) that gives rise to the largest UAi(di) for
i ≥ 1,

xi(t + 1) = max{xi(t)|
U ′

Ai
(di(t))· z−i(t)

(z(t))2
=1

, 0}. (27)

The goal of the misbehaving user is to mitigate the utilities of
benign users so that these information is known priori or can
be inferred so that he is capable of launching misbehaving
actions. The best response of A0 is expressed as

x0(t + 1) = max{x0(t)|�N
i=1 U ′

Ai
(di(t))· xi(t)

(z(t))2
= 1

θ

, 0},
(28)

which means that UAi(di) (∀i ≥ 1) can be
observed or inferred by A0. This is feasible in visibility
competition and crowdsensing applications because the bids
of a user in the form of promotion messages and contributed
efforts are directly observable by the misbehaving user. In
other applications such as DDoS attack, Ai’s bid, xi, is not
easily acquired, while the misbehaving user can still infer the
global utility through perceiving the sensibility of the system
by producing attacks.

We hereby provide a concrete example of best response
functions where UAi(di) is a logarithmic function taking the
form UAi(di) = log(1+di). The above best response function
is given by

xi(t + 1) = max{−3z−i(t) +
√

8z−i(t) + (z−i(t))2

4
, 0}.

(29)

Here, z−i(t) is the total bid of other users, which is observed
directly or can be deduced from the acquired resources by
Ai. Given the fixed x0, each benign user can update his
strategy in each step and may converge to the Nash equilibrium
distributedly. Therefore, the incomplete information does not
prevent the search of NE by the benign users for a fixed
x0. However, when x0 is determined strategically by the
misbehaving user, he needs to know the utility functions of
the benign agents since his goal is to minimize their total
utility. Hence, the best response of the misbehaving user is

x0(t + 1) = max{
√

θ
∑N

i=1

xi(t)
1 + di(t)

− z−0, 0}. (30)

IV. NUMERICAL RESULTS

In this section, we validate the proposed bounds through
numerical simulations and reveal the important insights on the
efficiency of Kelly mechanism in adversity.

Fig. 1. Bounds of Umal
Umax

with linear utility functions.

Fig. 2. Bounds of Umal
Unom

for linear utility functions.

A. Linear Utility Functions

We hereby compute the performance measures for a large
number of random tests. In Fig. 1 ∼ 7, we consider the
timeline competition among five benign users (N = 5) and one
misbehaving user. Here, x-coordinate denotes the willingness
factor, and y-coordinate denotes different ratios respectively.
Each marked point in these figures with a marker represents a
corresponding ratio with randomly generated valuations from
uniform distribution in [0, 1] (some points are not plotted
simply for reducing the size of image files). Fig. 1 illustrates
the upper and the lower bounds of Umal

Umax
. The misbehaving

user does not participate in the worst case of Umal when θ
is less than 0.287. As θ further increases, the lower bound
descends rapidly. Similarly, the misbehaving user does not
participate in the best case of Umal when θ is less than 0.8.
A slight increase of θ beyond 0.8 leads to a rapid decrease
of the upper bound. Thus, for the small willingness factor,
we can deem that the efficiency loss in the total utility is
mainly caused by the competition among the benign users.
The bounds of utility loss are very sensitive to the change of
θ in certain ranges. Fig. 2 compares the utilities at two NEs
for the games MAL and NOM. The lower bound is shown
to decrease rapidly even for very small θ. Fig. 3 illustrates the
upper and the lower bounds of V mal

V max
. The upper bound of

the net utility is shown to be very sensitive to θ, especially
when θ is small. This implies that the best net utility is not
robust against the misbehaving actions. The lower bound is
fixed with small θ, but decreases when θ is above a certain
threshold. This manifests that the loss of net utility is caused
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Fig. 3. Bounds of V mal
V max

for linear utility functions.

Fig. 4. Lower bound of V mal
V nom

for linear utility functions.

by the competition among the benign users for small θ and by
the misbehaving user for large θ. The lower bound of V mal

V nom
is

shown in Fig. 4, which owns a similar property as the lower
bound of Umal

Unom
in Fig. 2. As θ increases from 0, the lower

bound decreases quickly.
Fig. 5 plots the upper and the lower bounds of Wmal

Wmax
. When

θ increases from 0, the lower bound increases accordingly.
When θ is greater than 0.8, the misbehaving user is bound
to participate. It is interesting to see that the participation of
the misbehaving user brings more revenues to the network
operator. When θ is 3, the upper bound of the game MAL is
nearly 20% higher than the best revenue in the game MAX.
Fig. 6 compares the revenue of the network operator at the
NEs MAL and MAX. The revenue of the network operator
in MAL is invariably no less than that in MAX. Especially,
the maximum improvement in our simulation is more than
70% when θ is 3. In light of the benefits brought to the network
operator, he may renounce the regulation of the misbehaving
user in targeted advertising. Fig. 7 plots the competition with
N = 100 benign users. The valuations of benign users are
identically independent distributed in [0, 1]. Hence, some of
them are close to 1 when N is large so that the ratio Umal

Umax

is kept at a high level. Compared with Fig. 1, the results
in Fig. 7 are more convergent and closer to the upper bound.
Note that the lower bound at N = 100 is reached when all the
valuations in the set {vi}N

i=2 are uniformly chosen as 0.499.
Since each vi (i ≥ 2) is randomly selected in the range [0, 1],

Fig. 5. Bounds of Wmal
Wmax

for linear utility functions.

Fig. 6. Bounds of Wmal
Wnom

for linear utility functions.

Fig. 7. Bounds of Umal
Umax

for linear utility functions (N = 100).

trying a limited number of tests can hardly reach a set of
{vi}N

i=2 that yield the worst ratio B1. Actually, a lot of benign
users possess relatively large valuations for a large N , causing
the corresponding samples of the ratio B1 much higher than
the lower bound. This also reflects the robustness of price-
anticipating Kelly mechanism in terms of the utility of benign
users at the large population scenario.

B. Logarithmic Utility Functions

We evaluate the lower bounds for logarithmic utility func-
tions in the form UAi(di) = ai log(1 + bidi) where ai and bi

are random positive parameters in the range [0, 1]. The number
of benign users is set to five. Fig. 8 ∼ 11 demonstrate the
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Fig. 8. Bounds of Umal
Umax

for logarithmic utility functions.

Fig. 9. Bounds of Umal
Unom

for logarithmic utility functions.

Fig. 10. Bounds of V mal
V max

for logarithmic utility functions.

correctness of the lower bounds for general utility functions.
One can observe that in each set of experiments, the lower
bound is sensitive to the change of the willingness factor in a
certain range. Note that the upper bounds of the scenario with
linear utility functions do not apply to the one with logarithmic
utility functions.

V. COUNTERMEASURE

In this section, we evaluate the impact of differential pricing
on the efficiency loss of Kelly mechanism in which the
network operator charges different prices of per unit of bid
from the players.

A. Differential Pricing

The bid of a user has multifarious physical interpretations
in different applications. For instance, the bid usually refers to

Fig. 11. Lower bound of V mal
V nom

for logarithmic utility functions.

the payment to network operator in the bandwidth allocation
game [4]; it also refers to the sending rate of advertising
messages in online visibility competition [15]. The standard
Kelly mechanism does not differentiate who contributes a
bid so that the “per unit price” of all bids is deemed as
1 uniformly. In practice, the network operator can steer the
bidding of players by charging them different prices where
this generalization of Kelly mechanism is named “price dif-
ferentiation” [6]. We choose the online visibility competition
as a use case to avoid confusion, where the benign agents
aim to gain visibility through online advertising and the mis-
behaving agent, usually a market incumbent, tries to mitigate
the visibility of benign agents. The fraction of visibility that
a user obtains is proportional to his message sending rate,
but inversely proportional to the aggregate message sending
rate, and the benign users have different valuations on each
unit of visibility [15]. We suppose that Ai is charged at a
price ci(ci ≥ 1) for generating advertising messages by a
normalized rate to gain eyeballs, and the fraction of harvested
visibility is di in Eq.(1). Then, the cost incurred by Ai is thus
cixi if the message sending rate is xi. The price differentiation
scheme is able to steer the resource allocation toward a better
network utility.

Our analysis on the robustness of Kelly mechanism mani-
fests that the misbehaving user has the potential to significantly
reduce network utility. To counteract the adversarial actions,
the network operator can wield the “weapon” of differential
pricing against the misbehaving user. An interesting question
arises: how will the differential pricing influence the utility
and the net utility of benign users, the revenue of the net-
work operator, and their lower bounds? We hereby consider
three scenarios separately: the uniform pricing, the differential
pricing on the misbehaving user, and the improper differential
pricing on the benign user.3

B. Impact of Differential Pricing on Kelly Mechanism

1) Uniform Pricing: All the users are charged the same
price c of generating advertising messages at a unit rate.
When using the strategy xi, Ai pays a fee cxi to the network
operator. For the linear utility functions of benign users,
the NE retains the same forms as Eq.(9) and (10) except that

3We claim the differential pricing on a benign user as an improper pricing
because it is unfair to penalize him in our context.
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vi is substituted by vi

c . When n benign users participate at the
NE, the threshold of willingness factor remains unchanged
so that adjusting the price c does not alter the participation
of the misbehaving user. The strategy of Ai at the new NE
shrinks by 1/c times for i ∈ [0, N ], and the payment of
a user to the network operator remains unchanged (easily
drawn from Theorem 2). Therefore, the fraction of resources
allocated to a benign user, his utility and net utility do
not change either. Meanwhile, because all the valuations are
equally dimensioned, the bounds of B1 ∼ B6 are unaltered.
We reiterate the major observations.

Corollary 1: Choosing a uniform price for all the users does
not change competition intrinsically. The utility of each user
is left unchanged, so are the lower bounds of performance
measures.

2) Differential Pricing on A0: The misbehaving user is
successfully identified by the network operator and is charged
at a higher price c > 1 while the benign users are charged at
a unit price. For the linear utility functions of benign users,
the NE is computed from Eq.(9) and (10) with the substitution
of θ by θ/c. As c increases, the actual willingness factor θ/c
may fall below the threshold of participation.

When the misbehaving user and n benign users participate
at the NE, the misbehaving user sends messages at a lower
rate according to Eq.(10). The total utility of benign users is�n

i=1 vi

nθ/c+1 , and is thus an increasing function of c. Similarly,
the total net utility of benign users is also an increasing
function of c according to Theorem 2. The total bid of all
users,

θ
�n

j=1 vj

nθ+c , is a decreasing function of c where the
benign users increase their bids yet the misbehaving user
decreases his bid. It is uncertain how the revenue of the
network operator is influenced by the differential pricing on
the misbehaving user. We adopt two examples with five benign
users and one misbehaving user to explain our observations.
When the valuation vector is v = [1, 0.66, 0.63, 0.23, 0.18] and
the willingness factor is θ = 1.2, we plot the revenue of the
network operator in Fig. 12 by increasing c from 1 to 2.5. The
revenue curve is not monotone: a slight price differentiation
may bring more revenues to the network operator, while
charging a much higher price reduces his revenue considerably.
We next examine the impact of c on the bounds of performance
measures. Because changing c is equivalent to altering θ,
the lower bounds retain the same forms in Theorem 4, but
with the substitution of θ by θ

c in the bounds B1 ∼ B4.
Corollary 2: The differential pricing on the misbehaving

user can effectively improve the utility and the net utility
of benign users, while it is usually (though not always)
detrimental to the revenue of network operator when the price
is high. The new lower bounds of B1 ∼ B4 are equivalent to
those with the willingness factor of θ

c .
3) Differential Pricing on a Benign User: The differential

pricing might incur a hazard that a benign user is mistaken
as a misbehaving user. Here, we suppose A1 is penalized by
the network operator. We consider two scenarios with regard
to whether the misbehaving user participates at the NE. When
n benign users including A1 generate positive message rates
but A0 does not participate, the total utility of benign users
is given by

∑n
i=1 vi − (n−1)(c+n−1)

c
v1

+
�n

i=2
1

vi

. Taking its derivative

Fig. 12. Total revenue and revenues from benign users as well as misbehaving
user: price differentiation on A0.

Fig. 13. Total revenue and revenues from benign users as well as misbehaving
user: price differentiation on A1.

over c, one can easily show that the total utility is strictly
decreasing with regard to c until A1 does not participate in
the competition. When A0 participates at the NE, the total
utility of benign users is

�n
i=1 vi

(c+n−1)θ+1 , a decreasing function
of c. However, such a monotone property does not hold in
the net utility. As c increases, charging a higher price to A1

causes him to reduce the message sending rate, and yields a
lower total net utility of benign users. When c is large than
a certain threshold, the competition among benign users is
lessened, causing an increase in the net utility until A1 is
completely excluded at the NE. For the sake of the same
reason, the impact of c on the revenue of network operator
is not monotone, either. Choosing the set of valuations as
v = [1, 0.66, 0.63, 0.23, 0.18] and the willingness factor as
θ = 1.2, the revenue of network operator is shown in Fig. 13.
The increase of c in the very beginning encourages more
benign users to increase their message sending rates, thus
causing an improved total revenue. As c further increases,
penalizing A1 reduces the intensity of competition, leading
to the decreased revenue of network operator.

Mischarging a benign user influences the lower bounds of
Kelly mechanism considerably. We may follow the analyses
in the proof of Theorem 4, though the expressions of lower
bounds are much more complicated. With improper differential
pricing on A1, the lower bound of benign users’ utility at the
NE over the social optimum (B1) can be analyzed following
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the same approach of that with uniform pricing, and hence
step-by-step math operations are omitted. When the network
operator sets a price c (c > 1) to A1, the lower bound B1 takes
place at two situations: i) Umal

Umax
≥ 1− (n−1)(

√
n+c−1−√

n−1)2

c

without the participation of A0 and ii) Umal

Umax
≥ 1

1+cθ with
the participation of A0 at the NE. With the increase of c,
the lower bound of B1 decreases at both situations. The
implication is that the worst utility ratio Umal

Umax
suffers from

the price differentiation no matter whether the misbehaving
user exists or not. When the misbehaving user participates at
the NE, a smaller willingness factor can yield the same low
bound of Umal

Umax
.

Corollary 3: The differential pricing on a benign user
reduces the total utility of benign users, while its impacts on
the net utility of benign users and the revenue of network
operator remain obscure. Meanwhile, the lower bound of
NE Utility over Maximum becomes smaller, thus making the
misbehaving user more harmful to the benign users as a
whole.

VI. RELATED WORK

We describe the closely related works from three perspec-
tives and summarize our major differences from the literature.

Timeline Competition: An important feature is that popu-
lar OSNs such as Facebook, Google+ and Twitter adopt a
timeline-based template to sort content reverse chronologi-
cally. Reference [15] first studied the competition between
different content creators on a user’s timeline. The timeline
competition is modeled as a non-cooperative game in [16]
that is in the standard form of Kelly mechanism. They further
extended the Kelly mechanism to the parallel competition
on multiple topics in a timeline [17]. Fully dynamic and
semi-dynamic models have been proposed in [18] and [19]
respectively to characterize the competition on followers’
timeline over time.

Contest Theory: In politics and economics, there are many
situations where users fight over property rights. The kernel
feature of a contest is the contest success function (CSF)
developed from the seminal work by Tullock [27], [28].
Rent-seeking, a specific contest, was studied in [29] and a
lobbying contest was studied in [30]. The Tullock CSF is the
special case of our timeline competition model when the utility
functions are all linear and the misbehaving user does not
exist. More recently, the studies on CSF mainly focus on the
equilibrium analysis with incomplete information [31], [32]
and the design of CSF mechanism [33], [34].

Bandwidth Allocation Games: F.P. Kelly proposed a market
mechanism in which each user submits a “bid” per unit time
to the network operator, and the network operator determines
the share of each user at a link [1]. In particular, the bandwidth
share is proportional to his bid and inversely proportional to
the sum of all users’ bids at a single link. Authors in [4]
established that the aggregate utility received by users was at
least 3/4 of the maximum possible aggregate utility. A “mis-
behaving” player was introduced in the Kelly mechanism to
study the lower bound of the total utility of benign users at an
infinite population regime [22]. Other important works studied

the performance of market equilibriums and the convergence
of best response dynamics when players compete on multiple
servers or links simultaneously [9], [35].

Brief Summary: Our study differs from the literature on
timeline competition and contest theory in two aspects: i) we
consider the presence of a misbehaving user that may appear
in targeted advertising or security game, while all the users are
assumed to be selfish in almost all the related works; ii) we
study the worst and the best performance of the contest with
heterogeneous users that have not been considered before. Our
study distinguishes from the literature on bandwidth allocation
games in three aspects: iii) we consider finite number of users;
iv) three different performance measures are compared and v)
both the lower and (some) upper bounds are investigated.

VII. CONCLUSION

This work studies the efficiency of the price-anticipating
Kelly mechanism in a generalized system consisting of a
finite number of benign users and a misbehaving user. We
model their competition as a non-zero sum game and then
investigate how the misbehaving user influences the three
imporant metrics on the price-anticipating Kelly mechanism:
the total utility and the total net utility of benign users as well
as the network operator’s revenue at the NE. We compare
each of them in the scenarios whether the misbehaving user
exists or not in the game. We obtain the lower bounds for the
general utility functions, and the upper bounds for the linear
utility functions. Both the upper and the lower bounds are
found in the regime of finite number of benign users, while
only the lower bound of only one metric has been analyzed
with infinite number of benign users in the literature. Our
study reveals two interesting observations on the misbehaving
behaviors. Firstly, there exist certain ranges for the misbehav-
ing user’s willingness factor upon which a slight increase in
the willingness factor can reduce the utility and the net utility
of benign users remarkably. Secondly, the misbehaving user
always brings more revenue to the network operator. When
the willingness factor is large, the network operator’s revenue
at the NE can be even greater than the maximum revenue he
receives in the absence of the misbehaving user.
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APPENDIX: PROOFS

Proof of Theorem 2

When the utility functions are linear, the NE conditions are
expressed as below:

viz
∗
−i

(z∗)2
− 1

{
= 0 if x∗i > 0
≤ 0 if x∗i = 0

∀i ≥ 1, (31)

θ
∑N

i=1

vix
∗
i

(z∗)2
− 1

{
= 0 if x∗0 > 0
≤ 0 if x∗0 = 0

. (32)

We first show that if n out of N benign users participate in
the NE, they must be A1, A2, · · · , An. This is easy to prove
by contradiction. Consider two benign users Ai and Aj with
vi > vj , x∗i = 0 and x∗j > 0. The above NE conditions do
not hold for such Ai and Aj . This property paves the way of
searching the NE step-by-step.

i) When only n benign users participate in the NE, the NE
conditions give rise to the following equation:

θ <
(z∗)2∑n
i=1 vix

∗
i

=
n− 1∑n

j=1 vj
∑n
j=1 1/vj−n(n−1)

. (33)

This inequality serves as the sufficient condition of excluding
the misbehaving user at the NE. Summing equations in (31)
for all i ∈ [1, n], we obtain the total bid of all benign users
and then compute each bid x∗i by{

x∗i =
(∑n

j=1 1/vj

n−1 − 1
vi

)(
n−1∑n
j=1 1/vj

)2
x∗0 = 0

(34)

ii) When both A0 and n benign users participate in the NE,
we sum the NE conditions of n benign users and that of A0

to compute z∗ first, and then solve all x∗i , x∗i =
( n+1/θ∑n

j=1 vj
− 1
vi

)(∑n
j=1 vj

n+1/θ

)2
x∗0 =

∑n
j=1 vj

n+1/θ

(∑n
j=1 vj

∑n
j=1 1/vj

n+1/θ +1−n
) ; (35)

iii) The NE conditions also require x∗i > 0 for 1 ≤ i ≤ n
at the NE. If we search from n = N , the NE will be found
in no larger than N steps, which is very intuitive.

iv). When x∗0 > 0, the utility of benign users is given by

U =

∑n
i=1 vi

nθ + 1

which is strictly decreasing with regard to θ. The net utility
of benign users is expressed as

V =
(1− nθ)

∑n
i=1 vi

nθ + 1
+
∑n

i=1

1

vi

θ2(
∑n
i=1 vi)

2

(1 + nθ)2
. (36)

Taking the derivative of V over θ, we obtain

dV
dθ

=
2
∑n
i=1 vi(

∑n
i=1

1
vi

∑n
i=1 viθ − n(nθ + 1))

(nθ + 1)3
. (37)

Given the condition of (34), the above derivative is below 0.
Hence, the net utility of benign users is also a decreasing
function of θ when A0 participates in the NE.

Proof of Theorem 3

i). The first item can be derived directly from the participa-
tion condition of the misbehaving user

θ >
n− 1∑n

i=1 vi
∑n
i=1 1/vi − n(n− 1)

. (38)

The expression
∑n
i=1 vi

∑n
i=1 1/vi has the minimum value

n2 for 0 ≤ vi ≤ 1 i = 1, · · · , N . Thus, the participation
threshold of the misbehaving user is equal to n−1

n , given n
benign users send positive bids to the network operator. Since
there has n−1

n < N−1
N , according to (9), x∗0 is always positive

at the NE no matter how many benign users participate for
θ > N−1

N .
ii). For the second item, if x∗i > 0 and x∗j > 0, the NE

conditions yield the following equality

(x∗i − x∗j )
(
∑N
i=1 x

∗
i + x∗0)2

=
1

vj
− 1

vi
. (39)

If vi > vj , there must have x∗i > x∗j .
iii) For the last item, we prove it by contradiction. We

assume x∗j = 0 and x∗i > 0 at the NE when the valuations
of all the benign users are identical. Then the expression (6)
gives rise to

1∑N
i=1 x

∗
i + x∗0

≤ 1

vj
(40)

and
1∑N

i=1 x
∗
i + x∗0

− x∗i

(
∑N
i=1 x

∗
i + x∗0)2

=
1

vi
. (41)

Because vi equals to vj , it is easy to conclude

x∗i

(
∑N
i=1 x

∗
i + x∗0)2

≤ 0, (42)

which is not true. Thus, x∗i must be positive for all the benign
users at the NE.

Proof of Theorem 4

(1) B1: (NE Utility over Maximum)
We consider two cases at the NE separately, i.e. x∗0 = 0 and

x∗0 > 0.
Case 1: x∗0 = 0. When the misbehaving user does not
participate at the NE, there are at least two benign users with
positive bids. We assume that the top n benign users participate
at the NE. Then, the minimum total utility is the result of the
following problem:

min U(d∗) (43)
s.t. 0 ≤ vi ≤ 1, ∀i = 2 · · · , n. (44)

WhenA0 does not participate, the NE conditions are expressed
as

vi∑n
j=1 x

∗
j

− vix
∗
i

(
∑n
j=1 x

∗
j )

2
= 1, ∀i = 2 · · · , n. (45)

After some simple manipulations, there has∑n

i=1
x∗j =

n− 1∑n
j=1 1/vj

. (46)
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The utility of each Ai is obtained by

vid
∗
i = vi −

∑n

j=1
x∗j = vi −

n− 1∑n
j=1 1/vj

. (47)

We next show that U is a convex function over the vector
of valuations {vi}ni=2 and the minimum is obtained at the
boundary of the feasible region. The Hessian matrix of U is
given by

H =
2n(n−1)

(
∑n
i=1 1/vi)3

·


∑n
i=1,6=2

1
vi

− v2
v23

· · · − v2
v2n

− v3
v22

∑n
i=1,6=3

1
vi
· · · − v3

v2n

· · · · · · · · · · · ·
−vn
v22

−vn
v23

· · ·
∑n−1
i=1

1
vi

 .

Here, we omit the positive constant 2n(n−1)
(
∑n
i=1 1/vi)3

and denote

the Hessian matrix as Ĥ. Define two matrices Ĥ1 and Ĥ2 as

Ĥ1 = Diag(
∑n

i=1

1

vi
), Ĥ2 =


v2
v22

v2
v23

· · · v2
v2n

v3
v22

v3
v23

· · · v3
v2n

· · · · · · · · · · · ·
vn
v22

vn
v23

· · · vn
v2n


where Ĥ = Ĥ1−Ĥ2. Ĥ1 is a full-rank diagonal matrix whose
diagonal elements are the same, while the rank of Ĥ2 is only
1. Thus, the matrix Ĥ has m − 1 identical eigenvalue which
is
∑n
i=1

1
vi

. The last unknown eigenvalue is computed as 1
v1

and we validate it as the following. Define a new matrix as
Ĥ3 that has

Ĥ3 = Ĥ − Diag(
1

v1
)

=


∑n
i=3

1
vi

− v2
v23

· · · − v2
v2n

− v3
v22

∑n
i=2,6=3

1
vi
· · · − v3

v2n

· · · · · · · · · · · ·
−vn
v22

−vn
v23

· · ·
∑n−1
i=2

1
vi

 .
For each column j(j ≥ 2), we multiply it by vj+1

v2
and add

to column 1. Then, column 1 becomes a zero vector, which
validates the existence of an eigenvalue to be 1

v1
. All the

eigenvalues of the Hessian matrix H are positive which means
that H is strictly positive definite. Hence, U is a convex
function so that it is maximized at the point vi = 1 for
1 ≤ i ≤ n and the maximum value is 1 (i.e. Umax = 1).

Because U is strictly convex over the set of valuations
{vi}ni=2, the minimum utility U is chosen at the point that
has ∂U

∂vi
= 0 for all 2 ≤ i ≤ n if they exist. By letting the

first-order derivatives be 0, we obtain the optimal valuation v∗i
by

v∗i =
√
n(n−1)− (n−1), 2 ≤ i ≤ n. (48)

Submitting Eq.(48) to (47), we obtain the lowest total utility
of benign users by

U(d∗) = 1− (n−1)
(√
n−
√
n− 1

)2
. (49)

To find the monotonicity between U and n, we assume that n
is a continuous variable. We take the derivative of U over n
and obtain

dU
dn

= 3
√
n(n− 1)−3(n−1)−n+(n−1)

√
n−1

n

=
1√
n

(
√
n− 1−

√
n)3 < 0. (50)

Given N benign users competing for the resources, the mini-
mum total utility is obtained by

Umal ≥ 1− (N−1)
(√
N −

√
N − 1

)2
. (51)

The total bid of the benign users at this NE is computed as∑N

i=1
x∗i =

N − 1∑N
j=1 1/vj

=
N − 1√

N(N−1) +N
. (52)

Since the misbehaving user does not participate, the following
inequality holds

θ ≤
∑N
i=1 x

∗
i

U(N)
=

N−1√
N(N−1)+N

1− (N−1)(
√
N −

√
N−1)2

(53)

according to the NE conditions in (7). As N approaches
infinity, the asymptotic total utility is given by

lim
N→∞

U(d∗) = 1− lim
N→∞

(N−1)(
√
N −

√
N − 1)2

= 1− lim
N→∞

N−1

(
√
N +

√
N − 1)2

= 3/4. (54)

Case 2: x∗0 > 0. The NE conditions result in the following
equations

vi∑n
j=0 x

∗
j

− vix
∗
i

(
∑n
j=0 x

∗
j )

2
= 1, ∀i = 1, · · · , n, (55)∑n

j=1 vix
∗
i

(
∑n
j=0 x

∗
j )

2
=

1

θ
. (56)

Summing the above equations together, we have∑n

j=0
x∗j =

θ
∑n
j=1 vj

nθ + 1
(57)

and

U(d∗) =

∑n
j=1 vj

nθ + 1
. (58)

Denote by v the minimum valuation of A2 untill An. Here,
v must guarantee that each of these users pays a non-zero
bid at the NE. Thus, the worst total utility of benign users is
expressed as

U(d∗) =
1 + (n−1)v

nθ + 1
. (59)

The NE condition in (7) requires

v(n+ 1/θ) ≥ 1 + (n− 1)v. (60)

The above inequality gives rise to

v ≥ θ/(1 + θ). (61)
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Submitting inequality (61) to (59), we obtain

Umal ≥
1

1 + θ
. (62)

The set of valuations {vi}Ni=2 to minimize U are not unique.
For instance, U is minimized in the scenario where only two
players, A0 and A1, participate in the competition at the NE,
while the valuations of other benign users can be chosen below
v arbitrarily.

Combing the lower bounds in both cases, we can conclude
that the utility is lower bounded by

Umal ≥ {1−(N−1)(
√
N−
√
N−1)2, (1 + θ)−1}

where the crosspoint is taken at

θ =
(
(

√
N

N−1
+1)2−1

)−1
.

(2) B2: (NE Utility With/Without Misbehaving User)
This theorem compares the NEs of two games, GA and

GB: the first one excludes the misbehaving user, while the
second one considers the possible participation of the misbe-
having user. We suppose that the participation of nA benign
users at the NE in the former and the participation of nB
benign users at the NE in the latter, given the set of valuations
{vi}Ni=1. In these two games, nA and nB might not be the
same. We prove this theorem via four steps.

Step 1: Proving nA ≥ nB . When the misbehaving user
participates, the number of benign users that pay non-negative
bids may decrease. This step can be easily proved by contra-
diction from the NE conditions.

Step 2: Approximating the ratio of two utilities. The ratio
Umal
Unom is computed by

Umal
Unom

=

∑nB
i=1 vi

1 + nBθ
·
(∑nA

i=1
vi −

nA(nA − 1)∑nA
i=1 1/vi

)−1
. (63)

According to the NE conditions of the game GB, since there
are nB benign users participating in the competition, we have∑nB

i=1 vi∑nB
i=1 x

∗
i

= nB +
1

θ
and x∗i = 0 ∀i > nB . (64)

For any n with n > nB , the following inequality holds
vn∑n
i=1 x

∗
i

=
vn∑nB
i=1 x

∗
i

≤ 1 (65)

due to x∗i = 0. Hence, for nA and nB with nA ≥ nB , we
obtain∑nA

i=1 vi∑nA
i=1 x

∗
i

=

∑nA
i=1 vi∑nB
i=1 x

∗
i

=

∑nB
i=1 vi∑nB
i=1 x

∗
i

+

∑nA
i=nB+1 vi∑nB
i=1 x

∗
i

≤ nB +
1

θ
+ (nA − nB) = nA +

1

θ
(66)

which implies ∑nA
i=1 vi

nA + 1
θ

≤
∑nB
i=1 vi

nB + 1
θ

. (67)

Submitting (67) to (63), we derive the approximated lower
bound by

Umal
Unom

≥
∑nA
i=1 vi

1 + nAθ
·
(∑nA

i=1
vi −

nA(nA − 1)∑nA
i=1 1/vi

)−1
. (68)

Note that the NE of the game GA must involve two benign
users. Eq.(68) serves as a lower bound for nA ≥ 2. When only
A1 participates in the NE of the game GB, the utility of A1

is given by Umal = 1
1+θ . The total utility of benign users at

the NE of the game GA is no larger than 1. In this scenario,
Eq.(68) still holds at nA = 1. Therefore, Eq.(68) captures the
lower bound of UmalUnom for any nA ∈ [1, N ]. We drop all the
subscripts and obtain

Umal
Unom

≥
∑n
i=1 vi

∑n
i=1 1/vi∑n

i=1 vi
∑n
i=1 1/vi − n(n− 1)

· 1

1 + nθ
, 1≤n≤N. (69)

We let ∆ denote the expression
∑n
i=1vi

∑n
i=1

1
vi

. The deriva-
tive of the right-hand of Eq.(69) over ∆ yields

−n(n− 1)

(∆− n(n− 1))2
· 1

1 + nθ
≤ 0 (70)

where the equality holds only with n = 1. Therefore, the lower
bound of UmalUnom satisfies

Umal
Unom

≥ max ∆

max ∆− n(n− 1)
· 1

1 + nθ
. (71)

Step 3: Finding the maximum of the expression∑n
i=1vi

∑n
i=1

1
vi

.
To solve max ∆, we first analyze its first-order derivatives

over each vi for 1 ≤ i ≤ n. Since vn is no larger than any
other vi, there exists

d∆

dvn
=

n∑
i=1

1

vi
− 1

v2
n

n∑
i=1

vi =

n∑
i=1

v2
n − v2

i

viv2
n

≤ 0. (72)

The equality holds only when all vn are the same. Hence, ∆
is a decreasing function of vn. The maximum ∆ is obtained
at the point that vn reduces to its minimum value. When vn
further decreases, An will not participate in the competition.
For ease of notation, we denote v as the minimum value for
vn.

We next analyze the optimal selection of vi for 2 ≤ i ≤
(n−1). By taking the first and the second-order derivatives,
we obtain the following equations

d∆

dvi
=

n∑
j=1

1

vj
− 1

v2
i

n∑
j=1

vj , (73)

d2∆

dv2
i

=
2

v3
i

n∑
j=1,6=i

vj > 0 (74)

for all 2 ≤ i ≤ (n−1). By letting d∆
dvi

= 0, we can obtain
a set of {vi}ni=2 to reach the extremum of ∆. However, their
second-order derivatives are strictly positive. This means that
the maximum of ∆ is not reached at these {vi}ni=2, but at the
boundaries, i.e. vi = 1 or vi = v for all 2 ≤ i ≤ (n−1).
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We suppose vi = 1 for 1 ≤ i ≤ k and vi = v for k+1 ≤
i ≤ n. Then, there yields

∆ = (k + (n− k)v)(k +
n− k
v

)

= k2 + (n− k)2 + k(n− k)(v +
1

v
)

= n2 + k(n− k)(v +
1

v
− 2)

= n2 + k(n− k)(
√
v −

√
1

v
)2

= n2 + (
n2

4
− (

n

2
− k)2)(

√
v −

√
1

v
)2. (75)

Given n and
√
v, we find that the maximum ∆ is obtained

at k = n
2 if n is an even number, and is obtained at k =

dn2 e or k = bn2 c if n is an odd number. Although k = dn2 e
and k = bn2 c give rise to the same ∆ for fixed v, these two
scenarios correspond to different v at the NE. In what follows,
we examine the choice of v from the NE conditions.

Case i): n is an even number. Here, v is reached at the
boundary that An pays an arbitrarily small amount, i.e. x∗n
is infinitely approaching 0. The NE conditions result in the
following equations∑n

i=1 vi∑n
i=1 x

∗
i

= n+
1

θ
and

vn∑n
i=1 x

∗
i

=
vn∑n
i=1 x

∗
i

= 1. (76)

The above equations solve v by

v =
nθ

nθ + 2
(77)

The maximum ∆ is thus computed as

max
even

∆ =
n2

4
(1 + v)(1 +

1

v
)

= n2 +
n

θ
− n2

nθ + 2
− n

nθ2 + 2θ
. (78)

Case ii): n is an odd number and k = bn2 c. Eq.(76) gives
rise to

bn
2
c+ dn

2
ev = (n+

1

θ
)v. (79)

Hence, v is given by

v =
bn2 c
bn2 c+ 1

θ

. (80)

Case iii): n is an odd number and k = dn2 e. Following the
same technique, we have

v =
dn2 e
dn2 e+ 1

θ

>
bn2 c
bn2 c+ 1

θ

. (81)

Obviously, ∆ is a decreasing function of v according to
Eq.(75). Therefore, we only consider Case i) and Case ii) to
compute the lower bound of UmalUmal . The maximum ∆ at the
case of odd n is given by

max
odd

∆ = (bn
2
c+ dn

2
ev)(bn

2
c+ dn

2
e1
v

)

=n2+
n(n+1)

θ(n−1)
− n(n+1)

θ(n−1)+2
− (n+1)2

θ2(n−1)2+2θ(n−1)
.(82)

Step 4: Analyzing the lower bound of UmalUmal .
We consider the two cases with regard to n in Step 3

separately.
Case i): n is an even number. Submitting Eq.(78) to Eq.(71),

we obtain the following inequality

Umal
Unom

≥ 1 + nθ

1 + 2θ + nθ2
. (83)

Then, there exists

Umal
Unom

− 1

1 + θ
≥ (n− 1)θ

(1 + 2θ + nθ2)(1 + θ)
> 0 (84)

where n is no less than 2. Hence, the lower bound of UmalUnom
is expressed as

Umal
Unom

>
1

1 + θ
. (85)

Case ii): n is an odd number and k = bn2 c. Submitting
Eq.(80) to Eq.(71), the lower bound of UmalUnom is given by

Umal
Unom

≥ n(n− 1)θ + (n+ 1)

(n+ 1) + n(n− 1)θ2 + 2θn
. (86)

Then, we derive the following inequality

Umal
Unom

− 1

1 + θ
≥ θ(n− 1)2

((n+ 1) + n(n− 1)θ2 + 2θn)(1+θ)
≥ 0. (87)

Therefore, the lower bound of UmalUnom is formally given by

Umal
Unom

≥ 1

1 + θ
(88)

where it is tight for n = 1.
(3) B3: (NE Net Utility over Maximum)
First of all, the social optimal net utility Vmax approaches

1 asymptotically since Umax is 1. We suppose x∗i > 0 for
1 ≤ i ≤ n and x∗i = 0 for n+1 ≤ i ≤ N at the NE. Similar
to the preceding proof, two cases, x∗0 = 0 and x∗0 > 0, are
considered.
Case 1: x∗0 = 0. The total net utility of benign users is obtained
by

V(d∗) =
∑n

i=1
vi −

n2 − 1∑n
i=1 1/vi

. (89)

As proved before, U(d∗) is a strictly convex function over
the set of valuations {vi}ni=2, so is V(d∗). Hence, V(d∗) is
minimized at its unique interior point if it exists at the feasible
region. We differentiate V(d∗) over vi (2 ≤ i ≤ n) and obtain

∂V
∂vi

= 1− n2−1

(
∑n
j=1 1/vi)2

· 1

v2
i

, 2 ≤ i ≤ n. (90)

If there exists a feasible solution to ∂U
∂vi

= 0 for all 2 ≤ i ≤ n,
it minimizes V(d∗) with the participation of n benign users.
Due to the symmetric property of Eq.(90), all vi (2 ≤ i ≤ n)
are the same when minimizing V(d∗). Hence, we can easily
obtain

va = vi =
√
n2 − 1− (n− 1), ∀ 2 ≤ i ≤ n. (91)
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Submitting Eq.(91) to (89), we obtain

V(d∗) = 1 +
(n−1)(

√
n2 − 1− (n+1))

1 + 1
2

(√
n2−1 + (n−1)

) . (92)

The total amount of bids generated by benign users at the NE
is computed as∑n

i=1
x∗i =

n− 1∑n
j=1 1/vj

=
n− 1

1 + 1
2

(√
n2−1 + (n−1)

) . (93)

To enforce x∗0 = 0 at this NE, the willingness factor θ should
satisfy

θ <
(1 + (n− 1)va)(1 + (n− 1)/va)

n− 1
− n (94)

according to the expression (7). We next compare V(d∗) for
different n ∈ [2, N ]. Suppose that n is a continuous variable.
We differentiate V(d∗) over n and get dV(d∗)

dn < 0. Therefore,
the worst total net utility of benign users is obtained when all
of them participate at the NE. The minimum total net utility
is given by

Vmal ≥ 1 +
(N−1)(

√
N2 − 1− (N+1))

1 + 1
2

(√
N2−1 + (N−1)

) . (95)

Case 2: x∗0 > 0. The total net utility of benign users is
expressed in the following equation

V(d∗) = U(d∗)−
∑n

i=1
x∗i

=
1− nθ
1 + nθ

n∑
i=1

vi + (

n∑
i=1

1

vi
)
(θ
∑n
i=1 vi)

2

(nθ + 1)2
. (96)

We differentiate V(d∗) over vi and obtain

dV
dvi

=
1−nθ
1+nθ

+ (
θ

1+nθ
)2(
−1

v2
i

(

n∑
j=1

vj)
2+

n∑
j=1

2

vj

n∑
j=1

vj) (97)

and

d2V
dv2
i

= (
θ

1+nθ
)2 2

vi

(
(

∑n
j=1 vj

vi
− 1)2+

n∑
j=1,6=i

1

vj

)
> 0. (98)

From Eqs.(97) and (98), there exists a unique interior point to
minimize V(d∗) that satisfies 0 ≤ vi ≤ 1 for all i = 2, · · · , n.
Due to the symmetric property, there have v∗i = v∗j for any i
and j, 2 ≤ i, j ≤ n. Hence, we denote by v

(n)
b the identical

valuation of the benign users except A1 at this interior point.
By letting the derivative dV

dvi
be 0, we obtain the following

equation

2(n− 1)v3 + (3− 2n+ θ−2)v2 − 1 = 0 (99)

where v
(n)
b is the feasible solution. Note that the minimum

might take values at the boundary if the interior point is
outside of the feasible region. Thus, we need to examine the
possible scenarios where the valuations of some benign users
are chosen at the boundary. i) v∗i = 1 and 0 < v∗j < 1 for
2 ≤ i, j ≤ n. We will show that this scenario does not happen.
For any v∗j with 0 < v∗j < 1, there exists dV

dvj
|vj=v∗j = 0.

Thus, there must have dV
dvi
|vi=1 > 0. This means that any

local minimum cannot contain v∗i = 1 for 2 ≤ i ≤ n.

ii) v∗i = 0 and 0 < v∗j < 1 for 2 ≤ i, j ≤ n. In this
scenario, Ai does not send messages. It is equivalent to the
situation that n−1 benign users participate in the competition.
Thus, the interior point leads to the minimum V(d∗) for fixed
n.

The interior point results in the minimum V given that the
top n benign users send messages with positive rates at the
NE. However, it might not lead to the global minimum, i.e.
the minimum for each n ∈ [1, N ]. We need to compare the
minimum V(d∗) for each different n. Naturally, the minimum
V(d∗) is any n is formally given by

Vmal≥
(1−nθ)(1+(n−1)v

(n)
b )

1+nθ

+(1+
n−1

v
(n)
b

)(
θ(1+(n−1)v

(n)
b )

1+nθ
)2}, n = 1, · · ·, N(100)

where v(n)
b is the solution to Eq.(99) in (0, 1). Therefore, the

lower bound of VmalVmax is the minimum of Eq.(95) and Eq.(100).
When θ is large, the positive root of Eq.(99) approaches to

1. Then, the inequality (100) degenerates to

Vmal ≥
n

(1 + θn)2
, n = 1, · · ·, N. (101)

We take the derivative of the righthand over n and find that
the expression n

(1+θn)2 is strictly decreasing with θ and n if
θ × n is greater than 1. Hence, when θ and n are sufficiently
large, Eq.(100) is approximated by

Vmal ≥
N

(1 + θN)2
. (102)

The inequalities (95) and (102) yield the following approxi-
mated lower bound

Vmal
Vmax

≥ min{ 1

N
,

N

(1 + θN)2
}. (103)

(4) B4: (NE Net Utility With/Without Misbehaving User)
Consider two games, GA and GB: the former excludes the

misbehaving user, the latter considers the possible participa-
tion of the misbehaving user. Suppose that nA benign users
participate in GA at the NE and nB participate in GB at the
NE. It is easy to prove by contradiction to show nA ≥ nB .

Knowing from the proof of lower bound of B3, we have

Vnom =
∑nA

i=1
vi −

n2
A − 1∑nA
i=1 1/vi

(104)

for the game GA. For the game GB, there exist

Vmal =
1−nBθ
1+nBθ

nB∑
i=1

vi + (

nB∑
i=1

1

vi
)
(θ
∑nB
i=1 vi)

2

(nBθ+1)2
(105)

if the misbehaving user participates at the NE, and Vmal =
Vnom if it does not participate at the NE. We then prove this
theorem via three steps.

Step 1: Proving that
∑n
i=1 vi −

n2−1∑n
i=1 1/vi

decreases w.r.t.
n (2 ≤ n ≤ nA).

According to the NE conditions, there must have

vn ≥
n− 2∑n−1
j=1 1/vj

, ∀2 ≤ n ≤ nA. (106)
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Otherwise, the number of benign users participating at the NE
will be less than nA.

Denote by Φ(n) =
∑n
i=1 vi −

n2−1∑n
i=1 1/vi

. We prove by
induction that Φ(n) decreases w.r.t. n (2 ≤ n ≤ nA).

i) For n = 2, there have Φ(1) = 1 and Φ(2) = 1+v2− 3v2
1+v2

.
We subtract Φ(2) from Φ(1) and obtain

Φ(1)− Φ(2) =
3

1 + v2
− v2 =

1− (1− v2)2

1 + v2
> 0.

ii) we assume Φ(n − 1) > Φ(n) for n = k (2 ≤ k ≤
nA−1). We expand the expression of Φ(k) and Φ(k−1) and
obtain

Φ(k)− Φ(k−1)

=
∑k

i=1
vi −

k2 − 1∑k
i=1 1/vi

−
∑k−1

i=1
vi +

(k−1)2 − 1∑k−1
i=1 1/vi

= vk −
k2 − 1∑k
i=1 1/vi

+
(k−1)2 − 1∑k−1

i=1 1/vi

=
vk
∑k
i=1

1
vi

∑k−1
i=1

1
vi

+ ((k − 1)2 − 1)
∑k
i=1

1
vi∑k

i=1
1
vi

∑k−1
i=1

1
vi

−
(k2 − 1)

∑k−1
i=1

1
vi∑k

i=1
1
vi

∑k−1
i=1

1
vi

=
vk(
∑k−1
i=1

1
vi

)2 + (2− 2k)
∑k−1
i=1

1
vi

+ (k2−2k)
vk∑k

i=1
1
vi

∑k−1
i=1

1
vi

< 0.(107)

iii) For n = k+ 1, we subtract Φ(k) from Φ(k+ 1). There
has

Φ(k + 1)− Φ(k)

=
vk+1(

∑k
i=1

1
vi

)2 − 2k
∑k
i=1

1
vi

+ (k2−1)
vk+1∑k+1

i=1
1
vi

∑k
i=1

1
vi

=
vk+1(

∑k−1
i=1

1
vi

)2 + (2− 2k)
∑k−1
i=1

1
vi

+ (k2−2k)
vk+1∑k+1

i=1
1
vi

∑k
i=1

1
vi

.(108)

The denominator of Eq.(108) can be easily shown to be
strictly convex on vk+1. When vk takes the value k−1∑k

j=1 1/vj
,

there has Φ(k) − Φ(k−1) = 0. When vk+1 takes the value
vk, the denominator equals to that of Eq.(107), which is less
than 0. Therefore, we can conclude Φ(n) ≤ Φ(n− 1) for all
2 ≤ n ≤ nA.

Step 2: Approximating the ratio of two net utilities. The
ratio VmalVnom can be lower bounded by

Vmal
Vnom

≥
1−nBθ
1+nBθ

∑nB
i=1 vi+(

∑nB
i=1

1
vi

)
(θ

∑nB
i=1 vi)

2

(nBθ+1)2∑nB
i=1 vi −

n2
B−1∑nB
i=1 1/vi

(109)

for nB ≥ 2 due to the analysis in Step 1. For the special
case nB = 1, the denominator is 1, the maximum achievable
total net utility. Therefore, the lower bound of Vmal

Vnom can
be expressed as Eq.(109) for nB ≥ 1. For the sake of
convenience, we omit the subscript in the variable nB .

Step 3: Computing the lower bound of VmalVnom . Let ∆ be∑n
i=1 vi

∑n
i=1 1/vi. The lower bound can be simplified as

Vmal
Vnom

≥ 1

(1 + nθ)2

(1− n2θ2)∆ + θ2∆2

∆− (n2 − 1)
. (110)

We differentiate the right-hand expression of Eq.(110) over ∆
and find that the derivative is positive. This means that the
minimum of the right-hand expression is obtained when ∆ is
minimized. Since the minimum ∆ is n2 obtained at vi = 1
for all 1 ≤ i ≤ n, the lower bound of the ratio VmalVnom is

Vmal
Vnom

≥ n2

(1 + nθ)2
. (111)

The expression n2

(1+nθ)2 is strictly increasing w.r.t. n. We
finally conclude the worst case of the ratio as

Vmal
Vnom

≥ 1

(1 + θ)2
. (112)

(5) B5: (Operator’s Revenue over Maximum)
Note that Wmax is the maximum revenue obtained by the

network operator excluding the player A0. The NE conditions
yield

Wmal =
∑n

i=0
x∗i =

θ
∑n
i=1 vi

1 + nθ
(113)

when the top n benign users and the misbehaving user
participate at the NE; they also give rise to

Wmal =
∑n

i=1
x∗i =

n− 1∑n
i=1 1/vi

(114)

when the misbehaving user does not participate. It is clear to
observe that Wmal is an increasing function of any vi (2 ≤
i ≤ n). When the misbehaving user is excluded, the revenue
of the network operator is given by

Wmax = max
{vi}Ni=2

n− 1∑n
i=1 1/vi

(115)

where n is determined by {vi}Ni=2. Similarly, Eq.(115) is also
an increasing function of any vi (2 ≤ i ≤ n). By enumerating
all the possible n, we can see

Wmax =
N − 1

N
. (116)

Proving the lower bound. Eq.(113) and (114) both show
that Wmal is the increasing function of any vi (2 ≤ i ≤ n).
Thus, when the minimum Wmal is obtained, all the benign
users from A2 to An have the same lowest valuation denoted
by v. However, we need to find v for each case, x∗0 > 0 and
x∗0 = 0.

Case i): x∗0 > 0. The NE conditions yield

1∑n
i=0 x

∗
i

− x∗1
(
∑n
i=0 x

∗
i )

2
= 1, (117)

v∑n
i=0 x

∗
i

−
vx∗j

(
∑n
i=0 x

∗
i )

2
= 1, ∀2 ≤ j ≤ n, (118)

x∗1 + (n− 1)vx∗j
(
∑n
i=0 x

∗
i )

2
=

1

θ
. (119)
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When the benign users from A2 to An are at the boundary
of participation, we obtain v =

∑n
i=0 x

∗
i from Eq.(118), and

x∗0 + x∗1 = θ
1+θ from Eq.(117) and Eq.(119) by letting x∗j be

infinitely small. Then, the minimum valuation v is given by

v =
θ

1 + θ
. (120)

The minimum revenue of the network operator is

Wmal ≥
θ

1 + θ
. (121)

Case ii): x∗0 = 0. The minimum valuation v should be above
a certain threshold such that the misbehaving user will not
participate in the competition. According to the NE conditions,
there has

x∗1 + (n− 1)vx∗j
(
∑n
i=0 x

∗
i )

2
≤ 1

θ
. (122)

Summing up Eqs.(117), (118) and (122) together, we obtain∑n

i=0
x∗i =

∑n

i=1
x∗i =

n− 1

(1 + (n− 1)/v)
≤ θ(1 + (n− 1)v)

1 + nθ
(123)

due to x∗0 = 0. The equality holds when v reaches the stage
that the misbehaving user is at the boundary of participation.
Eq.(123) gives rise to the following equation to solve v,

v2 + (
1

n− 1
− (1 +

1

θ
))v + 1 = 0. (124)

Here, θ is no larger than n−1
n . Otherwise, the misbehaving user

will always participate in the competition. We next examine
whether there exists a feasible solution to v in Eq.(124). The
expression 1

n−1−(1+ 1
θ ) is always negative with θ ∈ [0, n−1

n ].
This means that there are two positive roots to Eq.(124). The
product of these two roots is 1, which indicates that one root
is in the range (0, 1) and the other is greater than 1. Thus, we
solve v by

v =
(1 + 1

θ )− 1
n−1 −

√
((1 + 1

θ )− 1
n−1 )2 − 4

2
. (125)

When the valuations of A2 to An take v in Eq.(125), both
Eq.(113) and Eq.(114) yield the same revenue to the network
operator at this boundary condition.

So far, we have computed two possible v for two cases
x∗0 = 0 and x∗0 > 0 separately. We denote by vA the minimum
valuation in Eq.(125) and by vB the minimum valuation in
Eq.(120). The final question is whether vA or vB results in
the minimum revenue of the network operator. We subtract vB
from vA and obtain

vA − vB

=
(1 + 1

θ )− 1
n−1 −

√
((1 + 1

θ )− 1
n−1 )2 − 4

2
− θ

1 + θ

=
1

2

[(
(1+

1

θ
)− 1

n−1
− 2θ

1+θ

)
−
√

((1+
1

θ
)− 1

n−1
)2−4

]
.(126)

Since 2θ
1+θ is less than 2, it is easy to validate that vA is

always greater than vB . Our previous analysis has shown that
the revenue of the network operator is an increasing function

of v no matter whether the misbehaving user participate or
not. Therefore, the minimum revenue should be obtained in
the case x∗0 > 0. To summarize, we have the following lower
bound

Wmal

Wmax
≥ θN

(1 + θ)(N − 1)
. (127)

(6) B6: (Operator’s Revenue With/Without Misbehaving
User)

Note that Wmal is the same as Wnom if the misbehaving
user does not participate at the NE. Hence, we only consider
the scenario with the participation of the misbehaving user.
Similar to the proceeding proofs, we denote GA as the game
excluding the misbehaving user, and GB as that with the
possible participation of the misbehaving user. Suppose that
nA benign users send messages with positive rates at the NE
of GA and nB benign users do so at the NE of GB. Then,
according to Eqs.(113) and (114), there exists nA ≥ nB . The
ratio Wmal

Wnom
satisfies

Wmal

Wnom
=
θ
∑nB
i=1 vi

∑nA
i=1 1/vi

(1 + nBθ)(nA − 1)
(128)

According to the inequality (67), this ratio has the following
bound

Wmal

Wnom
≥
θ
∑nA
i=1 vi

∑nA
i=1 1/vi

(1 + nAθ)(nA − 1)
(129)

so that we only need to analyze the lower bound with only the
benign users. In what follows, the subscripts on the variable
n are removed for simplicity. To obtain the lower bound
of Wmal

Wnom
, we need to find the minimum for the expression∑n

i=1 vi
∑n
i=1 1/vi. In the step 3 of proof of Theorem 5, the

above expression is shown to be a decreasing function of vn.
Hence, it is intuitive to see that vi(∀i ≥ 2) should be as large
as possible at the right-hand of Eq.(129). Hence, we have

Wmal

Wnom
≥ θN2

(1 + θN)(N − 1)
. (130)

For the given θ, v should be chosen to allow the participation
of the misbehaving user. Therefore, according to the NE
conditions, the maximum ratio is obtained by {vi}ni=2 chosen
from

θ
∑n
i=1 vi

1 + nθ
=

n− 1∑n
i=1 1/vi

. (131)

The above equality gives rise to∑n

i=1
vi
∑ 1

vi
≥ 1

θ
(n− 1)(1 + nθ). (132)

Submitting inequality (132) to (129), we obtain the lower
bound as

Wmal

Wnom
≥ max{1, θN2

(1 + θN)(N − 1)
}. (133)
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Proof of Theorem 5

(1) B1: (NE Utility over Maximum)
Similarly, we consider two cases separately, x∗0 = 0 and

x∗0 > 0. Note that the utility functions of all the benign users
are linear.
Case 1: x∗0 = 0. It is very direct to validate that the maximum
total utility is 1. For instance, when vi is equal to 1 for all
1 ≤ i ≤ N , the total utility is maximized. However, the set
of valuations {vi} that lead to this maximum are not unique.
We hereby want to find the condition to enforce x∗0 = 0.

Suppose that n benign users participate in the competition
at the NE. For an arbitrary set of valuations {vi}ni=2, the NE
conditions yield

θ ≤
∑n

i=1
x∗i (134)

for x∗0 = 0. It is easy to validate from our preceding proof that
x∗i increases with vi. At the same time, when more benign
users participate at the NE, the total rate of sending messages
increases accordingly. Hence, x∗0 = 0 is no longer true when
there has θ ≤ N−1

N .
Case 2: x∗0 > 0. We suppose x∗i > 0 for 2 ≤ i ≤ n and x∗i = 0
for n+1 ≤ i ≤ N . According to Eq. (58), the total utility of
benign users is given by U(d∗) =

∑n
j=1 vj

nθ+1 . The maximum
total utility is achieved at the point vi = 1 for all 1 ≤ i, j ≤
n, that is, U(d∗) ≤ n

nd+1 . As n increases, this upper bound
increases accordingly. Then, there has U(d∗) ≤ N

Nd+1 for any
n. When θ is greater than N−1

N , x∗0 is always positive. The
upper bound of the maximum total utility is given by

Umal ≤
N

1 + θN
. (135)

Combining the analyses in two cases together, we prove this
theorem.

(2) B2: (Approximate Upper Bound of NE Utility
With/Without Misbehaving User)

Consider two games, GA and GB: the former excludes the
misbehaving user, the latter considers the possible participa-
tion of the misbehaving user. Suppose that nA benign users
participate in GA at the NE and nB participate in GB at the
NE.

When the misbehaving user does not participate at the NE of
GB, both NEs are the same so that the ratio UmalUnom is 1. When
θ is greater than N−1

N , the misbehaving user will participate
for sure. In this scenario, it is difficult to compute the upper
bound of UmalUnom . The reason is that UmalUnom with nA = nB does
not necessarily constitute an upper bound for each n. Hence,
we only aim to find an approximated upper bound for UmalUnom .

i). We first consider the case that θ is slightly larger than
N−1
N . When θ is less than N−1

N , the maximum total utility is
obtained when the valuations of the participating users are 1
uniformly. When θ is slightly larger than N−1

N , the number
of the benign users that participate in the game GB will
not change. Because Umal is an increasing function of the
valuations, the maximum Umal is obtained by n

1+nθ where n

is the number of the benign users that participate. Then, the
upper bound of the ratio UmalUnom is approximated by

Umal
Unom

≤
∑n
i=1 vi

∑n
i=1 1/vi∑n

i=1 vi
∑n
i=1 1/vi − n(n− 1)

· 1

1 + nθ
. (136)

Following the proof of lower bound of B2, the minimum of
the expression

∑n
i=1 vi

∑n
i=1 1/vi is n2. The lower bound of

Umal
Unom can be further simplified as

Umal
Unom

≤ n

1 + θn
≤ N

1 +Nθ
. (137)

ii) We next consider the case that θ is large enough. In the
game GB, nB might be larger if the valuations of the benign
users increase. The highest improvement takes place when nB
increases from 1 to 2. However, Wmal only increases from

1
1+θ to 2

2+θ , which is very small for some large θ. In the game
GA, the minimum Unom is given by Eq.(11) in Theorem 4.
The minimum is achieved when all the benign users participate
in the competition at the NE. The valuations of A2 to AN are√
N(N − 1)− (N − 1) uniformly. When v2 increases to 1,
Unom improves significantly. Hence, when θ is large enough,
the approximated upper bound of UmalUnom takes place at nB = 1
and nA = N where the minimum Unom is reached. Then, the
approximated upper bound is given by

Umal
Unom

≤ 1

(1 + θ)(1− (N − 1)(
√
N −

√
N − 1)2)

. (138)

Combing the above two cases together, we obtain the
approximated upper bound for the ratio UmalUnom as

Umal
Unom

≤ max{ N

1 +Nθ
,

1

(1 + θ)(1− (N − 1)(
√
N −

√
N − 1)2)

}.(139)

(3) B3: (NE Net Utility Over Maximum)
We suppose that x∗i > 0 for 1 ≤ i ≤ n and x∗i = 0

for n+1 ≤ i ≤ N at the NE. The optimal total net utility is
found for each n in the first step. We then compare the optimal
total net utilities among all the possible n. Two cases are
considered, x∗0 = 0 or x∗0 > 0 (i.e. whether the misbehaving
user sends messages to the timeline or not).
Case 1: x∗0 = 0. The total net utility of benign users is given
by

V(d∗) =
∑n

i=1
vi −

n2 − 1∑n
i=1 1/vi

. (140)

According to the analysis in the proof of lower bound of B1,
V(d∗) is a strictly convex function so that the maximum V(d∗)
is obtain at the boundary of the feasible region, i.e. vi = 1
for all 1 ≤ i ≤ n. In other words, there has max V(d∗) = 1

n .
This maximum is achieved under the condition θ < n−1

n such
that the misbehaving user A0 does not participate.
Case 2: x∗0 > 0. The total net utility of benign users is given in
Eq.(96). The proof of lower bound of B3 manifests that there
exists a unique local minimum. The maximum total net utility
should be obtained at the boundary. Here, we only consider
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the right boundary, i.e. vi = 1 for 2 ≤ i ≤ n, because the
left boundary corresponds to the participation of less than n
benign users. Then, the maximum total net utility is obtained
by

V(d∗) =
n

(nd+ 1)2
.

In order to guarantee x∗0 > 0 at the NE, the willingness factor
θ must satisfy θ ≥ n−1

n .
We then proceed to find the maximum V(d∗) for all

n ∈ [1, N ] that satisfies the corresponding condition θ ≥ n−1
n .

Let n1 and n2 be two different integers in the set [1, N ]. We
compare the total net utilities at these two different scenarios.

V(d∗)|n1
− V(d∗)|n2

=
(n1 − n2)(1− n1n2θ

2)

(1 + n1θ)2(1 + n2θ)2
.

By endowing n1 and n2 different values, we obtain
- V(d∗)|1 < V(d∗)|2 if 1

2 < θ <
√

2
2 ;

- V(d∗)|1 < V(d∗)|3 is not true (i.e. θ ∈ (0,
√

3
3 )∩( 2

3 ,∞) =
∅);

- V(d∗)|1 < V(d∗)|4 is not true (i.e. θ ∈ (0, 1
2 )∩ ( 3

4 ,∞) =
∅);

- V(d∗)|2 < V(d∗)|3 is not true (i.e. d ∈ (0,
√

6
6 )∩( 2

3 ,∞) =
∅).

This is to say, for any θ, the maximum V(d∗) is either
V(d∗)|1 or V(d∗)|2.

We next merge the analyses of the cases x∗0 = 0 and x∗0 > 0.
When θ is in the range (n−2

n−1 ,
n−1
n ), the optimal total net utility

is 1
n if x∗0 = 0 and n ≥ 2. The optimal total net utility is
n−1

(1+(n−1)θ)2 if x∗0 > 0. When n ≥ 3 and θ ∈ (n−2
n−1 ,

n−1
n ), the

following expression always holds
n−1

(1 + (n−1)θ)2
>

1

n
, ∀ n ≥ 3.

The participation of A0 at the NE always generates a better
upper bound of the total net utility of benign users than that
in the absence of A0. Therefore, we only need to compare
three outcomes, 1

(1+θ)2 for θ > 0, 2
(1+2θ)2 for θ > 1

2 , and 1
2

for 0 < θ ≤ 1
2 .

We eventually summarize our results as follows

Vmal
Vmax

≤


1

(1+θ)2 if θ ≤
√

2−1
1
2 if

√
2−1 < θ ≤ 1

2
2

(1+2θ)2 , if 1
2 < θ ≤

√
2

2
1

(1+θ)2 , if θ >
√

2
2

. (141)

(4) B5: (Operator’s Revenue over Optimality)
Proving the upper bound. If the misbehaving user does not

participate at the NE, the maximum achievable revenue of the
network operator is the same asWmax. On the contrary, if the
misbehaving user participates at the NE, the maximum Wmal

is obtained by

Wmal ≥
θN

(1 + θ)(N − 1)
. (142)

Then, the upper bound is

Wmal

Wmax
≤ max{1, θN2

(1 + θN)(N − 1)
}. (143)

(5) B6: (Operator’s Revenue With/Without Misbehaving
User)

The upper bound can be solved directly. Consider a scenario
with v2 = ε and vi = 0 for all i ≥ 3. The total revenue
of the network operator is small enough with the asymptotic
bound Wnom = 0. For any given θ and the participation of
the misbehaving user at the NE, the total revenue is finite.
Therefore, the ratio has the property Wmal

Wnom
∝ ∞ which means

that it is unbounded.

Proof of Theorem 6

We will show that the worst case of general utility functions
occurs with linear utility functions of benign users. i) The
worst case of B1. Johari and Tsitsiklis [4] proved that the
worse case of B1 occurred in the case of linear utility functions
of benign users. Although there exists a misbehaving user
in our problem, the same proof can be reused without any
modification.

ii) The worst case of B3. Consider an arbitrary strategy
x̄ and the social optimal strategy xS that yield the cor-
responding allocations, d̄ = {d̄1, d̄2, · · · , d̄N} and dS =
{dS1 , dS2 , · · · , dSN}. There exist x̄i ≥ 0, d̄i ≥ 0, xSi ≥ 0,
dSi ≥ 0 and UAi(0) = 0 for all i ≥ 1.

The concavity of UAi(d̄i) leads to

UAi(d̄i) + U ′Ai(d̄i)(d
S
i − d̄i) ≥ UAi(d̄Si ), i = 1, · · · ,N.(144)

Therefore, we obtain a series of inequalities

V(x̄)

V(xS)
=

∑N
i=1(UAi(d̄i)− x̄i)∑N
i=1(UAi(d̄

S
i )−x̄Si )

≥
∑N
i=1(UAi(d̄i)−x̄i)∑N
i=1 UAi(d̄

S
i )

≥
∑N
i=1

(
UAi(d̄i)−U ′Ai(d̄i)d̄i

)
+
∑N
i=1

(
U ′Ai(d̄i)d̄i−x̄i

)∑N
i=1

(
UAi(d̄i)−U ′Ai(d̄i)d̄i

)
+
∑N
i=1 U

′
Ai(d̄i)d

S
i

.(145)

We next derive two inequalities to simplify the above expres-
sion. Because dSi is a fraction with

∑N
i=1 d

S
i ≤ 1, the follow-

ing inequality holds,
∑N
i=1 U

′
Ai(d̄i)d

S
i ≤ maxi U

′
Ai(d̄i). Since

UAi(d̄i) is concave and strictly increasing with UAi(0) = 0,
the expression UAi(d̄i)−U ′Ai(d̄i)d̄i is nonnegative. Therefore,
Eq.(145) satisfies

V(x̄)

V(xS)
≥
∑N
i=1

(
U ′Ai(d̄i)d̄i−x̄i

)
maxi U ′Ai(d̄i)

. (146)

Let x∗ be the unique NE strategy, and d∗ be the vector of
allocations at this NE. We define a new class of linear utility
functions as

Ūi(di) = U ′i(d
∗
i )di, ∀1 ≤ i ≤ N. (147)

If we let x̄ = x∗ (also d̄ = d∗ accordingly), the numerator
in the right-hand of Eq.(146) is the NE, and the denominator
is the social optimal total net utility of benign users and also
the social optimal total utility of benign users. Therefore, we
can see that the worst-case ratio Vmal

Vmax occurs in the case of
linear utility functions.
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Fig. 14. An illustration of the worst case condition of B2.

iii) The worst case of B2 and B4. Suppose that
the allocations at the NEs of MAL and NOM are
denoted by d∗mal={d∗1,mal, d∗2,mal, · · · , d∗N,mal} and
d∗nom={d∗1,nom, d∗2,nom, · · · , d∗N,nom}. According to the
KKT conditions Eq.(6) and (7), it is easy to conclude
d∗i,nom ≥ d∗i,mal for all i ≥ 1.

Before delivering the proof, we use a simple illustration to
explain why the worst case occurs with linear utility functions.
Figure 14 shows a strictly concave and strictly increasing
utility function. One can see that there has

UAi(d
mal
i )

UAi(d
nom
i )

>
UAi(d

mal
i )

UAi(d
mal
i ) · dnomi /dmali

=
dmali

dnomi

.

Formally, the following inequality holds,

UAi(d
mal
i )

UAi(d
nom
i )

≥ UAi(d
mal
i )

UAi(d
mal
i ) + U ′Ai(d

mal
i )(dnomi − dmali )

for 0 < dmali < dnomi . The equality holds only upon
U ′Ai(d

mal
i ) = 0, that is, the utility function of Ai is linear

to di. Combing the utility functions of all the benign users,
we observe that the worse case of B2 happens when all the
benign users have linear utility functions. Following the same
approach, we can also prove the worst case condition of B4.
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