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ABSTRACT
This work presents the design and implementation of TyrLoc, an ac-
curate multi-technology switching MIMO localization system that
can be deployed on low-cost SDRs. TyrLoc only uses a single RF
Chain to switch on each antenna in an antenna array within the
coherence time asynchronously, thus mimicking a MIMO platform
to pinpoint the positions of WIFI, Bluetooth Low Energy (BLE) and
LoRa devices. TyrLoc makes three key technical contributions. First,
TyrLoc modifies the firmware of inexpensive PlutoSDR that con-
trols the antenna switching pattern and tags the signal associated
with each antenna. Second, it develops a two-stage fine-grained
carrier frequency offset (CFO) calibration algorithm that harnesses
the agile antenna switching pattern and is 10× more accurate than
the baseline method. Third, TyrLoc employs an interpolated trans-
form approach to facilitate angle-of-arrival (AoA) estimation in the
presence of missing antennas. The AoA-based localization experi-
ments in a multipath-rich indoor environment show that TyrLoc
with eight antennas achieves the median errors of 63cm for WIFI,
39cm for BLE and 32cm for LoRa, respectively.

CCS CONCEPTS
• Networks → Location based services.
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WIFI [19–21] BLE [26–29] LoRa [31–33]

Technique CSI RSSI RSSI / ToF
Accuarcy ∼ 10−1𝑚 ∼ 100𝑚 100 ∼ 101𝑚
Advantage Ubiquity Low power Large scale

Table 1: Comparison of various protocols.

1 INTRODUCTION
Indoor localization is playing a crucial role in many applications
including shopping navigation, security surveillance [9, 10], aug-
mented reality [11, 12, 20] and health monitoring [13–15]. In par-
ticular, RF-based localization systems become increasingly popular
due to the pervasive usage of WIFI, Bluetooth Low Energy (BLE)
and LoRa devices. For example, WIFI network has been deployed
almost in every building, offering seamless network coverage; BLE
has a variety of applications in household appliances such as laun-
dry machine and portable devices such as wireless earphone; LoRa
provides wireless communication capability for different kinds of
sensors attached to industrial equipment in factories and smart
electric meter at home. Many efforts have been dedicated to build-
ing localization systems based on WIFI [16–25], BLE [26–30] and
LoRa [31–35]. Existing studies have mainly devoted to designing
and implementing advanced signal processing methods in order
to achieve higher accuracy of localization. Albeit their success in
using commodity devices, several major issues still exist.

• Absence ofMulti-technology Functionality.There lacks
an inexpensive indoor localization system that provides uni-
versal positioning service for mainstream RF technologies
including WIFI, BLE and LoRa.

• Small Size of AntennaArray. The accuracy of localization
is largely determined by the size of the antenna array. The
off-the-shelf devices are usually equipped with only a few
RF chains, each of which connects to an antenna element,
thus throttling the array size.

Each technique has its own strengths and suitable scenarios. The
ubiquitous deployment of WIFI devices offers an easy access to
WIFI-based localization service. Compared with WIFI, BLE is more
suitable for low-power portable devices to extend their battery lifes-
pan. LoRa is well-known for its long range transmission and strong
penetration ability. In large-scale indoor environment, only a few
anchor points based on LoRa can provide wide range positioning
services. The necessity for multi-technology localization begins to
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Table 2: Comparison of off-the-shelf Software Defined Radios.

PlutoSDR [1] HackRF [2] BladeRF x40 [3] BladeRF-2.0 xA9 [4] USRP B210 [5] WARP v3 [6]

RF Port SISO SISO SISO 2 × 2 MIMO 2 × 2 MIMO 2 × 2 MIMO
RF Coverage 70M∼6GHz1 1M∼6GHz 380M∼3.8GHz 47M∼6GHz 70M∼6GHz 2.4G/5G Band
Bandwidth 56MHz 20MHz 28MHz 56MHz 56MHz 40MHz
ADC Resolution 12-bit 8-bit 12-bit 12-bit 12-bit 12-bit
Max Sample Rate 61.44 MSPS 20 MSPS 40 MSPS 61.44 MSPS 61.44MSPS 100 MSPS
Price $150 $320 $420 $720 $1282 $5000

unfold as different types of RF signals coexist, thus creating an im-
mersive multi-modal wireless environment. An intuitive solution is
to employ one specialized localization system for each technology,
yet bundling all of them together is cumbersome and cost ineffi-
cient. The favorable concept of localization with commodity devices
ignores its potential drawbacks. For instance, accurate WIFI local-
ization attributes to the acquisition of channel state information
(CSI) that can be extracted from very few network interface cards
via Intel 5300 CSI Tool [36] or Atheros CSI Tool [37]. As for BLE and
LoRa, there does not exist a commodity device that offers the public
functionality of acquiring channel information containing phase
offset and amplitude attenuation. The lack of rich channel informa-
tion restricts the their positioning accuracy. As shown in Tabel 1,
for BLE and LoRa, the localization accuracy is markedly lower than
WIFI if only utilizes the RSSI or ToF provided by commodity device.
Hence, we advertise the use of software-defined radios (SDRs) for
universal localization in which the receiver is capable of operating
on a much wider spectrum and an agile channel bandwidth.

The popular SDRs with their performance parameters are listed
in Table 2. The high-end SDRs are equipped with MIMO ports, the
low-end SDRs are usually SISO, and they differ significantly in their
prices. In general, RF positioning accuracy relies heavily on the size
of antenna array [40]. To create a large array, we might have to syn-
chronize multiple high-end MIMO SDRs such as USRP and WARP
for more antennas (most of low-end SDRs do not support synchro-
nization), thus pushing up the price of the universal localization
system severalfold. One crucial question arises: can we design a
universal multi-technology localization system with inexpensive and
portable SISO SDRs?

To circumvent the limitation of small antenna array size, a
promising approach is to employ an RF switch to create a large
virtual antenna array with more antennas than RF chains. The basic
idea is depicted in Fig. 1(a). By using an RF switch to connect an
RF chain to different antennas asynchronously, then combining the
signals received from different antennas to construct a virtual syn-
chronous antenna array, one can utilize the received signals within
the coherence time to refine the accuracy of AoA estimation. In
SWAN, Xie et al. stitched twelve antennas to form a novel general-
purpose antenna array with commodity MIMOWIFI using Atheros
CSI tool [18]. This multi-functional and cost-efficient system is
specialized in WIFI, yet not applicable to alternative ubiquitous
Bluetooth and LoRa protocols. Phaser [22] utilizes a signal splitter
to synchronize two Intel 5300 NICs to form an array of five antenna.
In iArk, An et al. uses nine RF switches and a high-end MIMO SDR

1The RF coverage marked in the technical document is 325M∼3.8GHz, but it can
actually work at 70M∼6G.

(USRP-2950) to implement a powerful 8 × 8 antenna array [38]. It
supports multiple wireless IoT protocols and achieves high AoA
accuracy, but the high cost of the SDR might restrict its large-scale
deployment to some extent. More importantly, SWAN, Phaser and
iArk all need multiple synchronous RF chains in which at least one
RF chain connects to an antenna invariably to generate reference
signals for carrier frequency offset (CFO) calibration. This single
RF chain defect imposes great difficulties of transforming low-end
SISO SDRs into powerful MIMO platforms.

(a) (b)

Figure 1: (a) The basic idea of constructing a virtual synchro-
nous antenna array based on RF switch. (b) The hardware
demonstration of TyrLoc prototype.

In this paper, we design TyrLoc using a low-end PlutoSDR with
a single RF chain and an array of extended antennas. TyrLoc offers
the virtual MIMO functionality that yields a high accuracy of indoor
localization. Fig. 1(b) demonstrates the TyrLoc prototype built with
a PlutoSDR (∼ $150), an RF switch (∼ $19) and an FPGA borad
(∼ $22, the FPGA chip inside is ∼ $3.5), and the major challenges
of designing and implementing TyrLoc are threefold.

Challenges #1: How can we modify the firmware of low-end
PlutoSDR to enable the MIMO functionality?

In TyrLoc, an FPGA board together with a single-port-eight-
throw (SP8T) RF switch is deployed to control the antenna switch-
ing mode. The FPGA module of PlutoSDR is modified to allow the
unused six bits of ADC output to encode the identities of antennas.
A serial-parallel conversion module is designed to address the in-
adequate GPIO problem, and synchronize the tagged data with the
antenna switching.

Challenges #2: How can we calibrate the phase offset caused by
CFO without a reference RF chain?

CFO represents the frequency mismatch of the oscillators be-
tween a transmitter and a receiver that introduces an additional
term in the received signal phases, and this phase offset accumu-
lates over time. With a reference antenna connected to an RF chain,
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the CFO induced phase offsets can be canceled out [18, 22, 38].
When such a reference antenna is absent, the phase offsets on
asynchronously activated antennas will be dominated by the CFO,
rather than the propagation distances from the signal source to
the antenna array. We propose a novel two-stage CFO calibration
approach for the single RF virtual MIMO system. The first stage
utilizes the intra-packet symbols to narrow down the CFO to a few
hundred Hertz. The second stage uses the inter-packet symbols
to refine the CFO estimation, and exploits the switching pattern
to cancel out the impact of the residual CFO on the signal phases
received at different antennas.

Challenges #3: How can we ensure the robustness of AoA estima-
tion if no packet received in a switching interval?

With the virtual MIMO provided by TyrLoc, we can estimate the
AoAs of multipath propagation using the classic MUSIC algorithm
[39]. The multipath signals are usually coherent so that the spatial
smoothing method [41] is introduced to enhance the MUSIC algo-
rithm. When TyrLoc switches to an antenna in the wild, it is highly
possible that no packet transmission happens or the packet is lost
at a slot. Then, some channel information is missing such that the
virtual MIMO array becomes non-uniform, and the standard spatial
smoothing is no longer applicable. We adopt the interpolated array
transform [42] to convert a non-uniform array into a virtual uni-
form array that facilitates the operation of the MUSIC algorithm
with spatial smoothing.

With TyrLoc’s virtual MIMO capability, we estimate the angle of
arrival (AoA) using the MUSIC algorithm with spatial smoothing
for WIFI, BLE and LoRa devices in typical indoor environments,
and further estimate their locations via the maximum likelihood
method. Experimental results show that the median error of AoA
estimation is 4.1◦ for WIFI, 2.9◦ for BLE, and 2.3◦ for LoRa in an
105𝑚2 room. For localization, TyrLoc with eight-antenna array
achieves the median errors of 63cm for WIFI, 39cm for BLE and
32cm for LoRa in multipath rich offices of 61𝑚2 and 105𝑚2. The
tracking experiment also manifests the accuracy and consistency
of Tyrloc’s localization performance. The cross-comparisons show
that LoRa is more resistant to long distance and Non-Line-of-Sight
(NLoS) transmission than WIFI and BLE.

2 SYSTEM OVERVIEW
The TyrLoc system consists of three key components: antenna
switching hardware module, signal processing software module
and multi-technology localization module. The hardware and the
software components work as a unity to transform a low-cost com-
modity SDR with a single RF chain into a multi-functional MIMO
platform.
1) Antenna Switching Hardware. The hardware module trans-
forms the commodity PlutoSDR equipped with a single pair of
transceivers into a virtual MIMO platform with an array of eight
antennas.

- Switch Controller. TyrLoc connects the RF chain of PlutoSDR
to a single-port-eight-throw (SP8T) RF switch, and deploys an FPGA
board to control the antenna switching.

- Antenna Tagging. TyrLoc takes advantage of the unused six
bits of ADC output to encode each antenna and decode its identity.

Figure 2: The hardware architecture of TyrLoc.

Theoretically, TyrLoc can support a large-scale array with up to 64
antennas.

- UART Design. TyrLoc implements a universal asynchronous
receiver-transmitter (UART) module to convert the parallel control
signal into the serial signal, and synchronize the tagged data with
the antenna switching.
2) Signal Processing Software. In the software module, TyrLoc
stitches the time asynchronous baseband signal samples received
on different antennas so that the aligned signals can be utilized for
channel parameter estimation therewith.

- Packet Detection. TyrLoc receives packets passively and de-
tects the starting time of a WIFI packet through Schmidl-Cox algo-
rithm [43]. For BLE and LoRa, the packet detection is performed
according to their preamble structures. For each technology (i.e.
WIFI, BLE and LoRa), a preamble detector is developed.

- Asynchronous CFO Estimation. TyrLoc designs a two-stage
CFO calibration approach to mitigate the phase drift after antenna
switching. This constitutes the major novelty of TyrLoc.

- AoA Estimation for Non-uniform Array. TyrLoc utilizes
the beamsteering capability of virtual antenna array to obtain the
direction of the WIFI, BLE or LoRa source using the MUSIC al-
gorithm with interpolated array transform and spatial smoothing
techniques.
3) Multi-technology Localization. TyrLoc makes use of multi-
ple antenna diversity to enable accurate indoor localization. Two
PlutoSDRs are used to perform the AoA-based localization for WIFI,
BLE and LoRa devices. The algorithms of two-stage CFO calibration
and building virtual antenna array are protocol independent. Tyr-
Loc can provide indoor localization service based on more wireless
protocols by adding corresponding preamble detectors.

3 TYRLOC HARDWARE DESIGN
In this section, we introduce the detailed hardware implementation
of TyrLoc. Fig. 2 illustrates the hardware architecture of TyrLoc. It
is composed of a vanilla ADALM-PLUTO SDR (PlutoSDR), a single-
port-eight-throw (SP8T) RF switch and an FPGA board. PlutoSDR is
a type of commonly used, off-the-shelf, low-cost and programmable
SDR platform. Its detailed information is listed in Table 2. The SP8T
extends the single receiving port of PlutoSDR to accommodate an
array of eight antennas. The FPGA board is placed between Plu-
toSDR and SP8T, and connects them with dupont lines. It receives
the serial signals from PlutoSDR and converts it into 3-bit parallel
signals to enable the RF switch to work at pre-design switching
frequency and pattern.
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Implementing the switch controller is a very challenging task
where we name a few difficulties below.

• How can we modify the PlutoSDR firmware to generate
cyclic control signals?

• How can the PlutoSDR transmit parallel control signals to
SP8T or receive control commands through only two unused
general-purpose input/output (GPIO) ports?

• How can we eliminate the asynchronization between the
received signal and the antenna switching?

The PlutoSDR uses Xilinx Zynq 7010 as the processing core. We
exploit the remaining logic resources of Zynq 7010 to process the
augmented functions.
Switch Controller. We design the switch controller based on a
finite state machine, which works with the ADC synchronously. In
Fig. 2, the brown line represents the transmission flow of control
commands. The switch controller can decode control commands
and generate cyclic control signals according to certain switching
frequencies and patterns. The output of the switch controller, called
tag flow, is used to tag the data flow from the ADC and transmitted
to the UART module.
Control Signal Conversion.Only two GPIO ports remain unused
in PlutoSDR, thus restricting us to directly control the SP8T RF
switch which needs three control inputs in parallel. Besides, one or
more control inputs are required to change the switching frequency
or the pattern. The UART module is designed to transform the
parallel control signal into serial signal so that we can send it to
the FPGA board through GPIO Port #1. The FPGA board is also
implemented with a UART module to recover the serial signal
into 3-bit control inputs of the RF switch. With the UART module
and GPIO Port #2, we can send control commands to the switch
controller in order to change the switching pattern or frequency
promptly.
ID Tagging.When the signals from different antennas are exported
from the same RF chain, they cannot be differentiated so that the vir-
tual antenna array cannot be constructed. Therefore, it is inevitable
to modify the PlutoSDR firmware to tag the data collected from
each antenna. In PlutoSDR, the programming part of Zynq 7010 is
used to process the raw data from the ADC. As shown in Fig. 2, the
ADC output includes the In-Phase (I) branch and the Quadrature
(Q) branch. The output format of each branch is a 16-bit integer,
while the accuracy of ADC is only 12 bits. Taking the I-branch as an
example, the highest bit (i.e. the 15𝑡ℎ bit) is the sign bit, the lower 3
bits (i.e. the 12𝑡ℎ∼14𝑡ℎ bits) are unused, and the remaining 12 bits
(i.e. the 0𝑡ℎ∼11𝑡ℎ bits) are the valid ADC data. It inspires us to turn
these unused bits into antenna tags. We use the RF switch control
signals generated by the switch controller to replace the 12𝑡ℎ∼14𝑡ℎ
bits of the data flow. Combining the I- and Q-branch together, we
can convert 6 unused bits into antenna tags, thus supporting an
extended array of up to 64 antennas. We implement the tagging
function in the PlutoSDR firmware with Verilog codes.
ID Extraction. In the backend, each received sample point is repre-
sented by a 32-bit complex number, the first half of which represents
the real part, and the remaining half represents the imaginary part.
We can extract the 12𝑡ℎ∼14𝑡ℎ bits of real and imaginary parts, then
convert them into the antenna ID. TyrLoc stamps the 12𝑡ℎ∼14𝑡ℎ
bits of Q-branch with the antenna ID. The 3-bit signals from "000"

Figure 3: The timing sequence of TyrLoc.

to "111" correspond to eight antennas. Then, TyrLoc can easily
distinguish the signals coming from different antennas.
Data and Antenna synchronization. UART is an asynchronous
communication module. At the meantime, the RF switch also takes
a little time to complete the switching. It will introduce some time
delay, causing the switching of antennas to lag behind the ID tag-
ging. Therefore, we need to eliminate this delay before processing
the received signals. The time sequence of TyrLoc is illustrated in
Fig. 3 and the delay can be expressed as:

𝑇𝐷𝑒𝑙𝑎𝑦 = 𝑇𝑈𝐴𝑅𝑇 +𝑇𝑆𝑤𝑖𝑡𝑐ℎ
= (42𝑇𝑃𝑙𝑢𝑡𝑜 + 10𝑇𝐵𝑎𝑢𝑑 +𝑇𝐹𝑃𝐺𝐴) +𝑇𝑆𝑤𝑖𝑡𝑐ℎ

(1)

The entire delay can be divided into UART transmission delay
𝑇𝑈𝐴𝑅𝑇 and the switching time𝑇𝑆𝑤𝑖𝑡𝑐ℎ of the RF switch. In the first
part,𝑇𝑃𝑙𝑢𝑡𝑜 and𝑇𝐹𝑃𝐺𝐴 represent one clock period of PlutoSDR and
FPGA board respectively. 𝑇𝐵𝑎𝑢𝑑 is the time for UART to send one
bit. At 𝑡1, the antenna ID tagged to the data flow changes from 𝑖

to 𝑖 + 1. Then, it totally takes 42 clock periods to trigger the UART
module from the idle state to sending state and update the voltage of
GPIO. We choose the signal sample clock as the UART clock in the
PlutoSDR, thus 𝑡2−𝑡1 = 42𝑇𝑃𝑙𝑢𝑡𝑜 . From 𝑡2 to 𝑡3, PlutoSDR is sending
the serial signal to the FPGA board. The serial signal consists of
one start bit, eight data bits and one stop bit, thus taking 10𝑇𝐵𝑎𝑢𝑑
to transmit the signal. The FPGA board also takes one clock period
to detect the beginning of serial data transmission, thus the parallel
control signal of RF switch will not update until 𝑡4. Then, the RF
switch takes time to complete the switching from antenna 𝑖 to 𝑖 + 1.
During this period, the received signal is regard as invalid and it
will be discarded. In TyrLoc,𝑇𝐵𝑎𝑢𝑑 is 4𝑢𝑠 ,𝑇𝑃𝑙𝑢𝑡𝑜 = 1/𝑓𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 is
decided by the sample frequency of PlutoSDR, 𝑇𝐹𝑃𝐺𝐴 equals 20𝑛𝑠
and the 𝑇𝑆𝑤𝑖𝑡𝑐ℎ is typically 150𝑛𝑠 [8].

4 CFO MODEL WITH ASYNCHRONISM
The phase offset caused by carrier frequency offset (CFO) is the ma-
jor obstacle that hinders us from directly constructing an antenna
array based on single RF chain. In this section, we describe the math-
ematical model of CFO and analyze its impact on an asynchronous
antenna array.

4.1 Carrier Frequency Offset Model
CFO is an essential phenomenon in wireless communication sys-
tems, mainly attributed to the unaligned carrier frequency between
the oscillator of the transmitter and that of the receiver. The oscil-
lators are produced by different manufactures at various standards
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so that CFO always exists and may drift over time [44, 47]. Exist-
ing CFO calibration algorithms are designed for communication
purposes, pursuing extremely high time efficiency, while allows
relatively large estimation errors (e.g. several hundred Hertz) that
does not influence packet receptions but are detrimental to our AoA
estimation. The influence of CFO on signal phase will be described
in detail below.

Denote by 𝑓𝑡𝑥 and 𝑓𝑟𝑥 the carrier frequencies of Tx and Rx re-
spectively, and denote by Δ𝑓 = 𝑓𝑡𝑥 − 𝑓𝑟𝑥 the CFO of the Tx-Rx pair.
The mathematical model of signal transmission (ignoring noise) is
given by

𝑦 (𝑡) = [(𝑠 (𝑡)𝑒 𝑗2𝜋 𝑓𝑡𝑥 𝑡 ) ∗ ℎ𝑐 (𝑡)]𝑒−𝑗2𝜋 𝑓𝑟𝑥 𝑡

= 𝑒−𝑗2𝜋 𝑓𝑟𝑥 𝑡
∫

𝑠 (𝑡 − 𝜏)𝑒 𝑗2𝜋 𝑓𝑡𝑥 (𝑡−𝜏)ℎ𝑐 (𝜏) 𝑑𝜏

= 𝑒 𝑗2𝜋Δ𝑓 𝑡
∫

𝑠 (𝑡 − 𝜏)𝑒−𝑗2𝜋 𝑓𝑡𝑥𝜏ℎ𝑐 (𝜏) 𝑑𝜏

= 𝑒 𝑗2𝜋Δ𝑓 𝑡
∫

𝑠 (𝑡 − 𝜏)ℎ(𝜏) 𝑑𝜏

= 𝑒 𝑗2𝜋Δ𝑓 𝑡 [𝑠 (𝑡) ∗ ℎ(𝑡)]

(2)

where 𝑠 (𝑡) is the baseband signal, ℎ𝑐 (𝑡) represents the channel
impulse response, ℎ(𝜏) = 𝑒−𝑗2𝜋 𝑓𝑡𝑥𝜏ℎ𝑐 (𝜏), and ∗ is the convolution
operator. The transmitter upconverts the baseband signal 𝑠 (𝑡) to
the carrier 𝑓𝑡𝑥 , then the receiver downconverts the signal from the
carrier by multiplying 𝑒−𝑗2𝜋 𝑓𝑟𝑥 𝑡 .

If two duplicated raw signals 𝑠 (𝑡) and 𝑠 (𝑡 +𝑇 ) (i.e. 𝑠 (𝑡) = 𝑠 (𝑡 +𝑇 ))
are transmitted with an interval 𝑇 , the received signals 𝑦 (𝑡) and
𝑦 (𝑡 +𝑇 ) are expressed as{

𝑦 (𝑡) = 𝑒 𝑗2𝜋Δ𝑓 𝑡 [𝑠 (𝑡) ∗ ℎ(𝑡)]

𝑦 (𝑡 +𝑇 ) = 𝑒 𝑗2𝜋Δ𝑓 (𝑡+𝑇 ) [𝑠 (𝑡 +𝑇 ) ∗ ℎ(𝑡 +𝑇 )]
(3)

During the coherence time, the channel impulse response is
essentially invariant, thus ℎ(𝑡) = ℎ(𝑡 +𝑇 ). Then, we obtain

𝑦 (𝑡 +𝑇 ) = 𝑒 𝑗2𝜋Δ𝑓 𝑇𝑦 (𝑡) (4)

Notice that 𝑦 (𝑡 +𝑇 ) is being rotated by 𝑒 𝑗2𝜋Δ𝑓 𝑇 on the basis of
𝑦 (𝑡). As time interval𝑇 increases, the phase shift accumulates over
time. For instance, an 802.11n WIFI system operates at 5GHz band
and its center frequency tolerance is ±20ppm [45] which means
that the CFO may reach ±200kHz. If CFO is merely 10kHz, much
smaller than the error boundary, time interval is 2𝑚𝑠 , the phase
offset caused by CFO equals 40𝜋 which is intolerable for any phase
related applications.

4.2 Model of Asynchronous Array
TyrLoc employs an asynchronous antenna array so that the signals
on different antennas are received at different time slots. The phase
distortion caused by CFO hinders us from directly grouping the
phase of antenna array. To eliminate the influence of CFO, we define
the phase model of the asynchronous uniform linear array with M
antennas. Given the 𝑖𝑡ℎ packet 𝑝𝑘𝑡 (𝑖) is received by antenna 𝑥𝑖 .

𝜑𝑖 = (𝜑𝑖−1 + 2𝜋 · Δ𝑓𝑖 ·𝑇𝑖 + 2𝜋𝑑 sin\/_) mod 2𝜋 (5)

where 𝜑𝑖 is the phase of 𝑝𝑘𝑡 (𝑖) received by antenna 𝑥𝑖 , Δ𝑓𝑖 is the
CFO while switching to 𝑥𝑖 , 𝑇𝑖 represents the time interval between
𝑝𝑘𝑡 (𝑖 − 1) and 𝑝𝑘𝑡 (𝑖), and it is usually variable for different 𝑖 , \

denotes the Angle of Arrival (AoA) of the signal source, 𝑑 is the
spacing between two adjacent antennas and _ is the signal wave-
length.

(a) Synchronous array (b) Asynchronous array

Figure 4: Signal phases of a 3-antenna array: synchronous vs
asynchronous.

We compare the phases of received signals by three antennas
in Fig. 4. The left side is for the synchronous array and the right
side is for the asynchronous one. The horizontal coordinate records
the receiving times of three consecutive packets, and the vertical
coordinate measures their phases. For the synchronous array, the
relative phase differences 𝜑\ between antennas are caused by the
different propagation distances from the signal source to the anten-
nas, and the phase shift 𝜑𝑓𝑖 between adjacent slots is caused by the
CFO. The CFO does not distort the AoA estimation because it only
uses the simultaneously received signals. While for the asynchro-
nous array, only the phases in Fig. 4(b) can be measured, and the
phase difference between pairwise antennas contains an additional
unknowns 𝜑𝑓𝑖 , preventing the calculation of 𝜑\ .
Misunderstanding 1. Supposing Δ𝑓𝑖 to be similar, the𝑀-element
antenna array can establish𝑀 − 1 equations in (5). They can be used
to estimate the parameter \ .

This approach does not work for three reasons. One is that CFO
is not constant over time as the clocks drift [44, 47], as shown in
Fig. 7. Another is only one arriving angle can be inferred in this
way, while traditional AoA algorithms can estimate the angles of
multipath signals. The third is that the equations are ill-conditioned
if 𝑇𝑖 and 𝑇𝑗 are sufficiently close. Thus, the numerical calculation
of CFO and \ might be wrong from time to time.
Misunderstanding 2. We only use one antenna to receive signals
at different time slots, thus \ = 0◦ and Eq. (5) can be simplified as
𝜑𝑖 = (𝜑𝑖−1 + 2𝜋 · Δ𝑓𝑖 ·𝑇𝑖 ) 𝑚𝑜𝑑 2𝜋 . Then, Δ𝑓𝑖 is calculated based on
𝜑𝑖 and 𝜑𝑖−1.

CFO can be as high as 10kHz and the inter-packet delay 𝑇𝑖 is
usually larger than 1𝑚𝑠 . Hence, the term 2𝜋 · Δ𝑓 ·𝑇𝑖 is much larger
than 2𝜋 so that the CFO-induced phase shift has rotated 2𝜋 for
many rounds. Besides, other factors such as IEEE 802.11 carrier
sensing mechanism might cause 𝑇𝑖 inconsistent so that the CFO
induced phase shift changes greatly. For a non-linear equation set,
estimating the amount of rotations through trial-and-error does
not work well.

5 TWO-STAGE CFO ESTIMATION
With the help of TyrLoc’s hardware platform, the signals can be
harvested by the virtual antenna array. In this section, we present
a novel method for fine-grained CFO calibration.
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5.1 Moose Algorithm.
TyrLoc employs Moose algorithm [46] to perform the CFO estima-
tion. It relies on the duplicated training sequences contained in the
preamble. The basic idea and main operations of Moose algorithm
are as follows.

We transform Eq. (3) into its discrete form. Here, 𝑠𝑛 is the 𝑛𝑡ℎ
sample point of a symbol, and 𝑠𝑛+𝑁 denotes the repeated point of
𝑠𝑛 , where 𝑁 is the amount of intervals between the two identical
symbols. Then, the received signals 𝑦𝑛 and 𝑦𝑛+𝑁 are given by{

𝑦𝑛 = 𝑒 𝑗2𝜋Δ𝑓 𝑛𝑇 (𝑠𝑛 ∗ ℎ𝑛) +𝑤𝑛
𝑦𝑛+𝑁 = 𝑒 𝑗2𝜋Δ𝑓 (𝑛+𝑁 )𝑇 (𝑠𝑛+𝑁 ∗ ℎ𝑛+𝑁 ) +𝑤𝑛+𝑁

(6)

where ℎ is the weighted channel impulse response,𝑤 is the zero-
mean white Gaussian noise and𝑇 is the sampling interval. For each
point 𝑠𝑛 , the received signal is 𝑦𝑛 that is modeled as a function with
regard to 𝑠𝑛 , Δ𝑓 and the channel impulse response. Then, using the
fact 𝑠𝑛 = 𝑠𝑛+𝑁 and the assumptionℎ𝑛 = ℎ𝑛+𝑁 within the coherence
time, there exists

𝑦𝑛+𝑁 = (𝑦𝑛 −𝑤𝑛)𝑒 𝑗2𝜋Δ𝑓 𝑁𝑇 +𝑤𝑛+𝑁
= 𝑦𝑛𝑒

𝑗2𝜋Δ𝑓 𝑁𝑇 −𝑤𝑛𝑒 𝑗2𝜋Δ𝑓 𝑁𝑇 +𝑤𝑛+𝑁
= 𝑦𝑛𝑒

𝑗2𝜋Δ𝑓 𝑁𝑇 +𝑤 ′
𝑛+𝑁

(7)

For 𝑛 = 1, 2, 3, ..., 𝑁 , we obtain
𝑦𝑁+1
𝑦𝑁+2
.
.
.

𝑦2𝑁


= 𝑒 𝑗2𝜋Δ𝑓 𝑁𝑇


𝑦1
𝑦2
.
.
.

𝑦𝑁


+


𝑤 ′
𝑁+1

𝑤 ′
𝑁+2
.
.
.

𝑤 ′
2𝑁


(8)

The maximum likelihood estimation of CFO is given by

Δ𝑓 =
1

2𝜋𝑁𝑇
∠(

∑𝑁
𝑛=1 𝑦𝑛𝑦𝑛+𝑁∑𝑁
𝑛=1 𝑦𝑛𝑦𝑛

) = 1
2𝜋𝑁𝑇

∠(
𝑁∑
𝑛=1

𝑦𝑛𝑦𝑛+𝑁 ) (9)

The variance of Δ𝑓 is determined by

Var(Δ𝑓 ) = 1
4𝜋2𝑇 2

𝑖
𝐿 · 𝑆𝑁𝑅

(10)

where 𝑇𝑖 = 𝑁𝑇 is the time interval between two identical symbols
of training sequence, 𝐿 = 𝑁 is the length of a training symbol in
the preamble. The Moose algorithm is incapable to yield an accu-
rate CFO estimate for the subsequent AoA estimation. Still taking
802.11n as an example, we can calculate the standard deviation of
CFO estimation to be 197Hz when the SNR is 30dB, the length of
training symbol is 64 and the symbol interval is 3.2𝑢𝑠 . Given the
switching interval 2𝑚𝑠 , the resulted calibration error is more than
2 𝑟𝑎𝑑 , overwhelming the relative phase differences caused by the
diverse 𝑇𝑥-𝑅𝑥 signal propagation distances.

According to the Eq. (10), the variance of CFO estimation depends
on time interval 𝑇𝑖 and length of training symbols. The classic
Moose algorithm exploits two neighbouring training symbols in a
preamble (e.g. Fig. 5(a)), while we perform the Moose algorithm on
two training sequences of consecutive packets (e.g. Fig. 5(b)). To
differentiate, we denote by𝑇𝑖 = 𝑇𝑠𝑦𝑚 if two symbols come from the
same packet, and by 𝑇𝑖 = 𝑇𝑝𝑘𝑡 if they come from two consecutive
packets. In general, 𝑇𝑠𝑦𝑚 is at the `𝑠 granularity, and 𝑇𝑝𝑘𝑡 is at
the 𝑚𝑠 granularity, i.e. 𝑇𝑝𝑘𝑡 ≫ 𝑇𝑠𝑦𝑚 . Therefore, the variance of

Δ𝑓 is relatively large (resp. small) when using intra-packet (resp.
inter-packet) symbols.

(a) Intra-packet CFO estimation

(b) Inter-packet CFO estimation

Figure 5: Moose algorithm: intra-packet and inter-packet.

The CFO estimation range of Moose algorithm is determined by

|Δ𝑓 |𝑚𝑎𝑥 <
1

2𝑇𝑖
(11)

Intuitively, the intra-packet CFO estimation (i.e. 𝑇𝑖 = 𝑇𝑠𝑦𝑚) has
a wide range but is less accurate, while the inter-packet CFO esti-
mation (i.e. 𝑇𝑖 = 𝑇𝑝𝑘𝑡 ) has a narrow range but is more accurate. In
TyrLoc, the initial CFO may be very large (e.g. 10kHz for WIFI and
BLE), which exceeds the estimation range of inter-packet method.
Therefore, Moose algorithm cannot be directly used to estimate the
CFO across the packets received on different antennas.

5.2 Two-stage Logic.
TyrLoc comes up with a two-stage CFO estimation approach. The
basic idea of our solution is shown in Fig. 6.

Figure 6: Illustration of the two-stage CFO calibration.

Coarse Estimation: Intra-paket. In the first stage, TyrLoc uses
the short and long training symbols of WIFI, the entire preamble
of BLE, and the consecutive symbols in the preamble of LoRa to
perform the intra-packet CFO estimation. We estimate the CFO for
twenty rounds and obtain preliminary CFO estimates. As shown
in Fig. 6, in the first stage, the average of these CFO estimates is
taken as the coarse CFO, and is used to adjust the carrier frequency
of PlutoSDR. Repeating in this way several times, we can narrow
down the carrier frequency gap between the transmitter and the
receiver to satisfy the estimation range requirement.
Fine-grained Estimation: Inter-packet. The coarse calibration
can reduce the CFO significantly to the range of a few hundred
Hertz. Its accuracy is insufficient for the multi-antenna localization
services, but it successfully drags down the CFO |Δ𝑓 | to be in the
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range 1
2𝑇𝑝𝑘𝑡 . In the second stage, we perform the inter-packet CFO

estimation to the preambles of consecutive packets. We also take
the average of fine-grained estimates to further shrink the CFO
by adjusting the carrier frequency of PlutoSDR, ensuring the CFO
locate in the estimation range. Limited by the PlutoSDR’s minimum
adjustment step of carrier frequency and the instability of CFO,
residual CFO still exists, but it will not cause the phase shift more
than 𝜋 within a switching period. Then we can get exact CFO
estimation to calibrate the phase shift.
Specialty in LoRa LoRa is an emerging wireless technology de-
signed for long range transmission. Its frame structure is much
different from WIFI and BLE. The preamble of LoRa frame starts
with a sequence of repeated up-chirp symbols (up to 65536 sym-
bols), each of which may last from 256𝑢𝑠 to 32.8𝑚𝑠 determined by
different transmission parameters. Thus the transmission time of
an entire frame may reach several hundred milliseconds or even
longer, which is too large for inter-packet CFO estimation. We
resolve this issue by executing the Moose algorithm on adjacent
symbols in the preamble. Because the symbol interval can reach
millisecond-level, this method can achieve the similar accuracy of
inter-packet CFO estimation with WIFI and BLE. Due to the symbol
interval is fixed, the phase offset caused by CFO is similar for each
symbol in a short time. We can directly conduct the fine-grained
CFO estimation without adjusting the center frequency of TyrLoc.

5.3 Building Virtual Synchronous Array
After performing two-stage CFO estimation, we obtain accurate
CFO estimates to calibrate the phase shift based on Eq. (5). However,
CFO is not constant over time as the oscillator slightly drifts [44, 47].

Figure 7: CFO fluctuation over time.

To evaluate the fluctuation of CFO, we use PlutoSDR to receive
repeated packets without switching, then perform two-stage CFO
estimation. In the experiment, the packet sending rate is 1000𝑝𝑘𝑡/𝑠
and we use high-frequency coaxial cable to connect the receiver
and transmitter to ensure higher SNR. According to Eq. (10), the
theoretical CFO estimation variance is small enough to server as
a reasonable approximation of the true value. In Fig. 7, the CFO
varies over time. Hence, for each switching round, we need to use
inter-packet method to obtain fine-grained CFO estimates one or
more times at the cost of a longer switching cycle.
Switching pattern To balance the accuracy of CFO estimation
and the time efficiency, we enumerate three antenna activating
sequences. In TyrLoc, the IDs of the antennas are numbered from 0
to 7 where we call the 0𝑡ℎ antenna the Pivot Antenna. The pivot an-
tenna is the starting point in each round of switching, and serves as

a “reference” for phase calibration. We exploit the packets received
by the pivot antenna to perform inter-packet CFO estimation.

At Pattern-A, the pivot antenna only repeats once in a round to
shorten the switching cycle as much as possible. To improve the
of performance of CFO estimation, the pivot antenna repeats once
for each two antennas at Pattern-B and every antenna at Pattern-C.
For TyrLoc (8-antenna array), the numbers of packets needed to
calculate a location are 9, 15 and 21 of Pattern-A, B and C.

Table 3: Three switching patterns applied in TyrLoc.

Switching Pattern (One Cycle)
Pattern-A 𝑥0, 𝑥0, 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛−1
Pattern-B 𝑥0, 𝑥0, 𝑥1, 𝑥2, ..., 𝑥0, 𝑥0, 𝑥𝑛−2, 𝑥𝑛−1
Pattern-C 𝑥0, 𝑥0, 𝑥1, 𝑥0, 𝑥0, 𝑥2, ..., 𝑥0, 𝑥0, 𝑥𝑛−1

Virtual synchronous array After calibrating the phase offset,
we commence assembling the virtual synchronous antenna array.
As shown in Fig. 8, the left part illustrates the phases received at
Pattern-C, in which the blue dots and orange dots represent the
average phases of the signal received by the pivot antenna 𝑥0 and
antenna 𝑥1 ∼ 𝑥7 respectively. It is worth emphasizing that building
virtual synchronous array does not require the assumption of fixed
packet interval. The preamble detector can locate the beginning
of each packet precisely. Hence, we can obtain the accurate time
interval for each pair of adjacent packets. Then, we can calculate
fine-grained CFO estimation according to Eq. (9).

Figure 8: Building virtual synchronous antenna array.

Due to the inconstancy of CFO, the slopes between every two
blue consecutive points are slightly different. The red cycle denotes
phase of virtual pivot antenna 𝑥 ′0, which is predicted based on the
CFO estimates. Δ𝜑𝑖 is the “actual” phase caused by the difference
of propagation paths to 𝑥0 and 𝑥𝑖 . Then, aligning all phase offsets
Δ𝜑𝑖 to the pivot antenna, we can construct a virtual synchronous
antenna array.

6 AOA ESTIMATION OF NON-UNIFORM
ANTENNA ARRAY

The MUSIC algorithm performs well when the signal sources are
uncorrelated. However, in the presence of multiple coherent sig-
nal sources, MUSIC algorithm encounters significant difficulties
because of the collapse of the dimensionality of signal subspace
[41, 49]. The multipath signals of indoor environment are usually
correlated, especially when the signal strength of direct path is
relatively weak due to obstruction, the classic MUSIC algorithm
may merge the multipath signals from distinct directions as one
superposed signal, leading to false peaks in the AoA spectrum [24].
MUSIC with spatial smoothing is an effective way to estimate the
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AoAs of multipath signals accurately [19, 24]. However, the spatial
smoothing operation requires a uniform linear array.

We call an array uniform if the spaces between any two adjacent
antennas are identical (usually the half wavelength). We narrowly
define that an array is non-uniform if one or more antennas are
missing in the uniform array. To be noted, the spatial smoothing
method is not applicable to non-uniform antenna arrays because
the Vandermonde structure of steering matrix is not maintained.
We hereby illustrate the need of designing a new AoA estimation
method for the switching antenna array.

Figure 9: No packet received when switching to antenna 𝑥𝑖 ,
and results in the absence of antenna 𝑥𝑖 in the assembled
virtual antenna array.

In TyrLoc, an antenna might not receive an effective packet in its
switching interval, possibly due to packet losses, no packet events
or the preamble is split by the RF switch. As shown in Fig. 9, if
a packet loss occurs while antenna 𝑥𝑖 is switched on, the assem-
bled virtual antenna array will be “incomplete” or “non-uniform”.
Therefore, MUSIC with spatial smoothing does not work in our
asynchronous antenna array robustly. We resort to the interpolated
array transform [42] to tackle this problem. It designs a mapping
matrix to convert the non-uniform array data into the virtual uni-
form array data that allows us to keep using the spatial smoothing
approach.

The detail of the interpolated array transform is the following.
Given 𝐾 narrow-band signal sources, 𝑁 antennas in the uniform
linear array with 𝑁 > 𝐾 , and 𝐿 snapshots of signals, the received
array data 𝒀 ∈ C𝑁×𝐿 can be written as

𝒀 = 𝑨𝑺 +𝑾 (12)

where 𝑺 ∈ C𝐾×𝐿 is the signal matrix,𝑾 ∈ C𝑁×𝐿 is the zero-mean
white Gaussian noise with the variance of 𝜎2 and 𝑨 ∈ C𝑁×𝐾 is the
steering matrix formed as 𝑨 = [𝜶 (\1), ...,𝜶 (\𝐾 )]. Here, 𝜶 (\𝑘 ) =
[1, 𝑒−𝑗2𝜋𝑑 sin\𝑘 , ..., 𝑒−𝑗2𝜋 (𝑁−1)𝑑 sin\𝑘 ]𝑇 corresponds to the channel
response vector of the antennas 𝑥0 to 𝑥𝑁−1 on the 𝑘𝑡ℎ source. When
a packet loss occurs on 𝑥𝑖 , the element 𝑒−𝑗2𝜋𝑑𝑖 sin\𝑘 will be removed
in 𝜶 (\𝑘 ). We substitute it by 𝜶 ′(\𝑘 ) = [1, ..., 𝑒−𝑗2𝜋 (𝑖−1)𝑑 sin\𝑘 ,
𝑒−𝑗2𝜋 (𝑖+1)𝑑 sin\𝑘 , 𝑒−𝑗2𝜋 (𝑁−1)𝑑 sin\𝑘 ] with only 𝑁 −1 elements. Sim-
ilarly, we replace the matrix 𝑨 by its counterpart 𝑨′ ∈ C(𝑁−1)×𝐾

that has 𝑨′ = [𝜶 ′(\1), ...,𝜶 ′(\𝐾 )]. Meanwhile, 𝒀 is replaced with
𝒀 ′ ∈ C(𝑁−1)×𝐿 .

Now the antenna array is non-uniform so that the steeringmatrix
𝑨′ doesn not satisfy Vandermonde structure. We need to design a
mapping matrix to generate a virtual steering matrix complying
with Vandermonde structure. There exists

˜𝑨 = 𝑴𝑨′ (13)

where ˜𝑨 is the virtual steering matrix, and 𝑴 ∈ C(𝑁−1)×(𝑁−1)

is the mapping matrix. Then, select 𝑃 (usually 𝑃 > 𝑁 ) sampling

(a) Room A

(b) Room B

Figure 10: Testbed environment. The locations of transmit-
ter are marked as red dots and those of TyrLoc devices are
marked as blue squares.

angles 𝜙1 ∼ 𝜙𝑃 to construct the matrix 𝑨′
0 = [𝜶 ′(𝜙1), ...,𝜶 ′(𝜙𝑃 )].

Thus, the least square solution of array mapping matrix 𝑴 can be
solved by

𝑴 = ˜𝑨𝑨′
0
𝐻 (𝑨′

0𝑨
′
0
𝐻 )−1 (14)

Eq. (14) shows that the mapping matrix 𝑴 can convert the non-
uniform linear array data to the virtual uniform one. For the angular
ranges in (𝜙1, 𝜙𝑃 ), we acquire the approximated steering vector
𝜶 (\𝑖 ) ≈ 𝑴𝜶 (\𝑖 ). The mapping accuracy depends on the selection
of the sampling angles and the number of array elements.

We rewrite Eq. (12) after the interpolated array transform as
˜𝒀 = 𝑴𝒀 ′ = 𝑴𝑨′𝑺 +𝑴𝑾 ≈ ˜𝑨𝑺 +𝑴𝑾 (15)

where ˜𝒀 ∈ C(𝑁−1)×𝐿 is the array data matrix of virtual uniform
array. It is the sum of the manipulated signal matrix 𝑴𝑨′𝑺 and the
weighted noise matrix 𝑴𝑾 .

Then, the signal covariance matrix ˜𝑹 ∈ C(𝑁−1)×(𝑁−1) can be
expressed as

˜𝑹 = 𝐸 [˜𝒀˜𝒀𝐻 ] = ˜𝑨𝑺𝑺𝐻 ˜𝑨
𝐻 + 𝜎2𝑴𝑴𝐻 (16)

The weighted noise matrix 𝜎2𝑴𝑴𝐻 is harmful to the accuracy
of the MUSIC algorithm. Hence, we should prewhiten the noise
through the method described in [42]. Then, we can use the classic
MUSIC algorithm with spatial smoothing to estimate the AoA of
multipath signals.

7 EVALUATION
7.1 Experimental Setup
We evaluate the performance of TyrLoc in a rectangular office
room with area of 105𝑚2 and a smaller meeting room of 61𝑚2. The
layouts of the rooms are shown in Fig. 10, with some furniture,
computers and cabinets inside, making each of them a rich multi-
path environment. Here, we deploy TyrLoc at 𝐿1 to evaluate the
AoA microbenchmarks; 𝐿2, 𝐿3, 𝐿4 and 𝐿5 are used for evaluating
the accuracy of AoA-based indoor localization and tracking in the
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(a) WIFI (b) BLE (c) LoRa

Figure 11: The median AoA estimation error of different signal’s arriving angle.

(a) Switching Interval (b) Switching pattern (c) Array size

Figure 12: Factors affecting the AoA estimation accuracy. (a) Switching interval (b) Switching pattern (c) Array size

LoS situation. For the NLoS scenario, we use two wooden cabinets
(W:110𝑐𝑚 H:180𝑐𝑚 D:35𝑐𝑚, the total thickness of front board and
back board is 7𝑐𝑚) to block the direct path signal and place a metal
reflective surface in the room, and the other settings are the same
as those of the LoS situation.

WIFI. We employ a Lenovo X200 laptop equipped with an Intel
5300 NIC [36] as the transmitter. The transmission power is the
default setting of the CSI tool, 15dBm. The WIFI carrier frequency
is set on channel 100 (5.5GHz) and the transmitter broadcasts 500
packets per second.

BLE. We implement the BLE v5.0 PHY layer on a PlutoSDR.
We set the BLE transmitter working at advertising mode with the
signal transmission fixed on channel 39 (2.48GHz), and it sends 500
advertising packets per second. The transmission power is set to
the maximum, 7dBm.

LoRa.We use a wireless stick equipped with Semtech SX1276
[7] transceiver to send LoRa packets. The carrier frequency of
the transmitter is 915MHz; the spread factor is 9 and the signal
bandwidth is 250kHz. The transmission power of the node is 15dBm
and we set the preamble length of LoRa packet as 128 symbols,
where each symbol lasts 2.05𝑚𝑠 .

Receiver. The core component of TyrLoc is a PlutoSDR with
a single 𝑇𝑥 and 𝑅𝑥 . The SP8T RF switch used is HMC321ALP4E,
a broadband non-reflective RF switch in low-cost surface mount
packages, covering DC to 8GHz. We use an FPGA development
board to control the RF switch, the FPGA chip inside is Spartan-6
XC6SLX25-2FTG256C. We build the 8-antenna uniform linear array
for WIFI, BLE and LoRa respectively. The distance between two
adjacent antennas equals to half of the wavelength (2.7𝑐𝑚 for WIFI,
6𝑐𝑚 for BLE and 16.4𝑐𝑚 for LoRa).

7.2 Microbenchmark
We now evaluate how the accuracy of TyrLoc’s AoA estimation
is affected by the antenna switching behaviors. The receiver is
located at 𝐿1 in Fig. 10, and the transmitter is placed 4𝑚 away from
the receiver in line-of-sight. The ground-truth AoAs of test points
range from −80◦ to 80◦.

Angular accuracy To evaluate the AoA estimation capability
of TyrLoc, we use the MUSIC algorithm with spatial smoothing
to estimate the arriving angle of the signal. The ground truth is
calculated based on the physical locations of the transmitter and
TyrLoc. Fig. 11 plots the AoA results of all tested points. The median
errors of WIFI, BLE and LoRa are 4.1◦, 2.9◦ and 2.3◦, respectively.
The 90 percentile errors of them are 7.7◦, 5.6◦ and 5.1◦. Since we
use a linear antenna array in the experiment, TyrLoc will achieve a
better performance if the arriving angle is around the perpendicular
direction to the antenna array.

Impact of switching interval.We study the impact of switch-
ing interval by setting it at 4𝑚𝑠 , 2𝑚𝑠 and 1𝑚𝑠 for WIFI and BLE.
For LoRa, we adjust the spread factor to control each symbol lasts
4.10𝑚𝑠 , 2.05𝑚𝑠 and 1.02𝑚𝑠 . In the experiment, TyrLoc operates with
pattern-C and we test the AoA estimation performance at −10◦,
0◦, 10◦ three angles. The result is shown in Fig. 12(a), for WIFI,
the decrease in switching interval from 4𝑚𝑠 to 1𝑚𝑠 brings obvious
enhancement. The AoA median error reduces from 5.0◦ to 2.4◦.
While for BLE and LoRa, decreasing from 4𝑚𝑠 to 1𝑚𝑠 brings slight
improvement. The AoA median error reduces from 2.4◦ to 1.9◦ for
BLE and 2.0◦ to 1.8◦ for LoRa. Longer switching interval may cause
larger phase calibration errors, resulting in the degradation of AoA
estimation accuracy. It’s worth emphasizing that the transmission
time of WIFI or BLE packets with long payload may exceed 1𝑚𝑠 .
To be compatible with variable packet length, we set the switching
interval to 2𝑚𝑠 in the remaining experiments.
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(a) WIFI (b) BLE (c) LoRa

Figure 13: The median AoA estimation error of different distance between the transmitter and TyrLoc.

Figure 14: Impact of moving speed on
AoA estimation accuracy.

Figure 15: CDF of localization error in
LoS situation.

Figure 16: CDF of localization error in
NLoS situation.

Impact of switching pattern. Switching pattern is a key factor
in AoA estimation. We conduct experiments to test TyrLoc’s AoA
performance with pattern-A, B and C (illustrated in Table 3) to
evaluate the influence of switching pattern. The ground truth of
AoAs is −10◦, 0◦ and 10◦. The AoA estimation errors of different
protocols are plotted in Fig. 12(b). For WIFI, The median error is
5.1◦ with pattern-A, 4.3◦ with pattern-B and 2.7◦ with pattern C.
For BLE, the median error is 2.6◦, 2.2◦, 2.0◦ with pattern-A, B and C.
Meanwhile that of Lora is 2.0◦, 1.9◦, 1.8◦. Compared to Pattern-A
and B, Pattern-C provides better AoA estimation accuracy. More
frequent CFO estimation brings obvious accuracy improvement. So
the remaining experiments are all conducted at pattern-C.

Impact of array size. To understand the impact of the array
size on the AoA estimation accuracy, we repeat the AoA estimation
experiments with four, six and eight antennas. In Fig. 12(c), the
median AoA estimation errors are 8.7◦, 5.5◦, 4.1◦ with four, six and
eight antennas for WIFI, meanwhile, 6.6◦, 3.9◦ and 2.9◦ for BLE.
The median estimation errors of LoRa are 5.8◦, 2.8◦ and 2.3◦. One
can clearly observe that more antennas bring the better accuracy of
AoA estimation. Benefits from the switching based structure, Tyrloc
can realize array extension at very low cost to achieve significant
AoA performance improvement.

Impact of distance. We conduct experiments in a corridor to
further study the impact of the distance on TyrLoc. We gradually
increase the distance between the transmitter and the receiver from
five meter to sixty meter. Fig. 13 shows that the SNR of the signal
decreases with the increase of distance between the transmitter and
antenna array. Meanwhile, the median AoA estimation errors of
WIFI, BLE and LoRa increase from 2.6◦ to 3.7◦, 1.9◦ to 4.5◦ and 1.7◦
to 2.1◦ respectively. The accuracy of MUSIC algorithm greatly de-
pends on signal’s SNR [50]. With the increase of distance, WIFI and
BLE’s AoA performance declines obviously and the accuracy degra-
dation of BLE is more serious. Compared with BLE and WIFI, LoRa

remains higher SNR at the same distance and shows its stronger
resistant to long distance.

Impact of moving speed. To evaluate the impact of moving
speed on TyrLoc, we set the transmitter and receiver in a corri-
dor, then move the transmitter away from the antenna array with
a constant speed. According to Fig. 14, the performance of AoA
estimation degrades slowly as the speed increases. For WIFI, the
median error of AoA estimation increases from 3.1◦ with speed
0.5𝑚/𝑠 to 4.7◦ with speed 2𝑚/𝑠 . Similarly, it increases from 2.5◦ to
3.9◦ for BLE and 2.1◦ to 3.5◦ for LoRa.

Impact of antenna missing. To evaluate the performance of
interpolated array transform, we place a WIFI transmitter 4𝑚 away
at the 0◦ angle of the receiver. A wooden board (∼ 6𝑐𝑚 thickness)
is placed in the middle to create a gentle NLoS environment. To
simulate antenna missing, we randomly discard certain antenna’s
data. Three sets of experiment are conducted to test its performance
when missing one, two or three antennas. In Fig. 17(a), we compare
the accuracy of AoA estimation using MUSIC directly with that
of spatial smoothing MUSIC for the non-uniform antenna array
(NLA-SS). The median errors of MUSIC are 4.6◦, 5.3◦, 6.2◦ and 8.1◦
in the situations where the number of lost antennas increases from
0 to 3. Applying the interpolated array transform and the spatial
smoothing MUSIC, we obtain the median AoA errors 3.6◦, 4.5◦,
4.9◦ and 7.4◦ under the same setting. Thus, one can conclude that
our approach outperforms the standard MUSIC algorithm in the
presence of antenna missing.

Comparisonwithmaximum likelihood estimator.We con-
duct experiments in gentle NLoS environment to compare the AoA
estimation accuracy of NLA-SS with that of the maximum likeli-
hood (ML) estimator employed in Widar 2.0 [23], which does not
require a uniform antenna array. We randomly discard one an-
tenna’s data to generate non-uniform array. The results are shown
in Fig. 17(b). The median error of the ML estimator using one set of
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(a) NLA-SS vs MUSIC (b) NLA-SS vs ML

Figure 17: Comparison: NLA-SS, MUSIC and ML.

CSI (8-antenna array) is 7.7◦, that of the ML estimator using the CSI
of 5, 10 and 20 sets of CSI is 4.7◦, 4.4◦ and 4.1◦. The median error
of NLA-SS algorithm is 4.5◦. It only uses 1 set of data to achieve
similar accuracy of the ML estimator using 10 sets of data. While
in TyrLoc at least 21 packets are needed to harvest a set of CSI
at pattern-C, which corresponds to 21 switching intervals. Given
the packet sending rate 500𝑝𝑘𝑡/𝑠 , using 20 sets of data means the
localization update rate is merely 1.19/s, which is insufficient to
track moving targets.

7.3 Indoor Localization
Performance in LoS andNLoS situations.Weuse two PlutoSDR
receivers, deployed at L2 and L3 (each with an 8-antenna ULA)
in Room A, and at L4, L5 in Room B, to estimate the location of
transmitters based on direct path AoAs.We choose 35 points of each
room to examine the localization accuracy of TyrLoc. Fig. 15 plots
the CDF of localization error in LoS situations. The median errors
achieved are 63𝑐𝑚 with WIFI, 39𝑐𝑚 with BLE and 32𝑐𝑚 with LoRa.
We next measure the localization error in NLoS situation. We use
two thick wooden cabinets as the shields to block the LoS signals
from the transmitter, and place ametal reflective surface in the room
to detect the performance of TyrLoc in the environment with strong
reflective paths. Then the localization becomes more challenging
because the direct path signal is relatively weak due to obstruction.
Fig. 16 depicts the results of NLoS scenario where the median
localization errors are 96𝑐𝑚 for WIFI, 67𝑐𝑚 for BLE and 40𝑐𝑚 for
LoRa. Compared with the LoS scenario, LoRa’s performance slightly
drops 25%, while the accuracies of WIFI and BLE degrade by 52%
and 72% respectively. Due to the strong penetration ability of LoRa,
it exhibits the great potential for localization in complex indoor
environments.

Comparisonwith synchronous array.To compare the perfor-
mance of TyrLoc with the high-end SDR based localization system
with a synchronous antenna array. We use two WARP v3, each
equipped with a 4-antenna array, to build a prototype of Array-
Track [24]. We also compare TyrLoc with commodity WIFI-based
system. We employ two laptops equipped with Intel 5300 NIC as
the receivers and faithfully reproduce the algorithm of SpotFi [19].
We repeat the AoA and localization experiments based on WIFI in
LoS situation. The carrier frequency is 5.5GHz and bandwidth is
20MHz, using the same setting of TyrLoc’s “WIFI mode”. Fig. 18(a)
shows the comparison of AoA estimation error. The median error
of TyrLoc is 4.1◦, that of ArrayTrack and SpotFi is 4.9◦ and 4.8◦.

(a) AoA estimation error

(b) CDF of localization error

Figure 18: Comparison: TyrLoc, ArrayTrack and SpotFi.

The localization result is depicted in Fig. 18(b), the median error
achieved is 63𝑐𝑚 with TyrLoc, 79𝑐𝑚 with ArrayTrack and 75𝑐𝑚
with SpotFi. Compared with the ArrayTrack system built with two
WARP v3 (𝑐𝑜𝑠𝑡 ∼ $10000), TyrLoc enables a larger antenna array
with much lower cost (𝑐𝑜𝑠𝑡 ∼ $400) and achieves higher localization
accuracy. Compared with SpotFi, TyrLoc is multi-functional and
flexible. It supports not only WIFI, but also BLE and LoRa-based
localization services, both of which are more accurate than WIFI.

7.4 Device Trajectory
We further using TyrLoc to track the movement of a transmitter
that is held in a person’s hand. The transmitter is placed at around
3𝑚 away from two receivers. We ask a user to move the transmitter
along the trajectory drawn on the ground to write letters in Room
A. Fig. 19 depicts some examples of the recovered letters, in which
the blue trajectories are estimated by TyrLoc, and the grey letters
are the ground truths. Here, the trajectory “M”,“O” is obtained using
WIFI, “B”,“I” is tracked by BLE and “S”,“Y”,“S” is conducted by LoRa.

Figure 19: Tracking devices with TyrLoc.

8 RELATEDWORK
Localization based on various protocols. There are many in-
door localization system based on various wireless protocols. Due
to the page limit, we just list part of the systems based onWIFI, BLE
and LoRa. Since the release of CSI tool kit [36, 37], many indoor
localization systems based on specific commodity WIFI devices
have been presented [19–22, 25, 51, 53]. In these work, advanced
phased-array signal processing techniques are applied to achieve
high position accuracy. But the commodity devices for BLE, LoRa
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cannot provide rich channel information, which results in relatively
lower localization accuracy than those based on WIFI [26–29, 31–
33]. To improve their accuracy, some attempts have been made to
build the prototype based on SDR devices [30, 35, 52]. Those work
process the raw signal data and achieve similar or higher precision
than WIFI-based systems. TyrLoc exploits the flexibility of SDR to
construct a general purpose platform that can easily switch to WIFI,
BLE or LoRa mode as needed.

Antenna array extension. Many efforts have been made to
expand the antenna array to improve the accuracy of localization.
Previous wireless localization systems [24, 54] connect multiple
clock-synchronized SDRs to obtain a larger antenna array. While
the SDR that supports synchronization is usually expensive. Using
multiple high-end SDRs results in severalfold hardware cost, which
restricts its practical deployment. To reduce the overall cost of the
system, some attempts have been made to combine multiple com-
modity WIFI device to extend the antenna array. Phaser [22] and
3D-WIFI [55] utilize a signal splitter to realize the synchronization
of two WIFI NICs. Six RF chains are adapted for a five-antenna
phased array, one radio chain is reserved for synchronization. To
improve the utilization of the RF chain, antenna extension based on
RF switch is a promising approach. SWAN [18] connects three RF
switches (SP4T) to the three RF chains of a WIFI NIC correspond-
ingly. It realizes a twelve-antenna array based on commodity WIFI
devices. iArK [38] implements an large-scale antenna array based
RF switches. These work have in common that one RF chain is used
for synchronization or calibration purpose, thus at least two RF
chains are required. We also notice the term “bandwidth stitching”
[56] that merges CSI on multiple separate channels into a unified
one, which is different from the term “antenna stitching”. TyrLoc
proposes a novel calibration method that enables single RF chain
to build a virtual phased array with very low hardware cost.

9 CONCLUSION
TyrLoc empowers the inexpensive PlutoSDR with a large-scale
antenna array only using a single receiving RF chain. The firmware
of PlutoSDR is modified to enable an RF switch to control the
antenna switching, and a novel two-stage CFO calibration algorithm
is designed to make the received signal phases useful. The accurate
localization results of TyrLoc on WIFI, BLE and Lora manifest its
multi-technology functionality. TyrLoc’s techniques are crucial to
other low-cost programmable SDRs with a single RF chain, and
are more widely applicable to other applications such as gesture
recognition and motion tracking.
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